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Alzheimer’s disease (AD) is known for some well-characterized 
pathological changes including the extracellular accumulation of 
amyloid plaques, intra-neuronal presence of neurofibrillary tangles, glial 
hypertrophy and neuronal death [1-3]. Paradoxically, myelin pathology 
in human AD has not been widely studied, even though it has been more 
than a century since Alois Alzheimer described myelin disruption in AD 
in 1911 [4,5]. It is unclear why the phenomenon of myelin impairment 
has been forgotten for more than 100 years. Classical neuropathological 
changes in AD, such as amyloid plaque deposition and the presence 
of neurofibrillary tangles in the brain, are responsible for neuronal 
damage and synapse loss, but there is also emerging evidence that 
oligodendroglial degeneration and myelin impairment are present in 
the brains of AD patients [6-9]. 

Data from animal models suggest that focal demyelination is mainly 
found in the proximity of beta amyloid plaques within the neocortex 
[10-12]. Schmued et al. have provided evidence for the complete 
disruption of myelinated fibers passing through Aß plaques in the 
regions adjacent to the plaques in the rat hippocampus [12]. At the 
same time, myelin impairment may aggravate neuronal dysfunction, as 
myelin supports axonal survival. Clinically, such impairment translates 
into deterioration of cognition, as different myelination disorders result 
in cognitive decline. 

At present, the knowledge of the role of myelin in human AD is mostly 
limited to MRI neuroimaging studies [9,13-15]. The most recent data 
indicate that beta amyloid deposition in the brain may change the white 
matter microstructure, as confirmed by brain MRI, and this phenomenon 
can be found even in early stages of the disease [9]. In addition, there is 
a strong correlation between a decrease in Aß levels in the cerebro-spinal 
fluid of subjects in the preclinical phase of AD and a decrease in selected 
MRI myelin measures indicative of myelin damage [9]. 

As mentioned above, the neurodegenerative process in AD has been 
clasically perceived as being initiated by the accumulation of aggregated 
Aß 42 and the presence of neurofibrillary tangles. This process probably 
causes neuronal death; however, there is evidence that it may also lead to 
the damage of myelin and myelin-producing oligodendorcytes [16,17]. 
Still the exact nature ofthe interaction beteween AD pathology and 
myelin damage remains unclear. 

Some studies suggest that myelin damage in AD may even precede 
Aß and tau pathologies [17]. Myelin basic protein (MBP), which is 
an intracellular protein and a major structural protein component of 
myelin, has been proven to bind ß amyloid and inhibit ß amyloid fibrill 
formation in AD, which may have a regulating role in the deposition of 
Aß 42 and the formation of amyloid plaques in the extracellular space of 
the brains of AD patients [18,19]. MBP is also responsible for ß amyloid 
degradation in vitro [18]. MBP levels are significantly decreased in 
the white matter of AD patients [20], and there is a strong association 
between decreased MBP levels and the increase in Aß42 in the brain 
tissue of AD patients [9]. It is therefore possible that the loss of myelin 
and the decrease in MBP levels result in accelerated deposition of Aß 
and increased deposition of Aß plaques in the brains of AD patients. On 
the other hand, as mentioned above, the deposition of Aß in the human 
brain deteriorates the state of myelin. It has been shown that Aß induces 
death of oligodendrocytes  and inhibits myelin formation [21]. Thus, the 
loss of myelin in AD may be involved in a kind of vicious circle which 
promotes further neuronal loss and disease progression. 

The above data are also in accordance with the results of our 
previous study in which we observed increased levels of antibodies 
against different glial derived antigens (anti-MOG, anti-MAG, anti-
MBP, anti-PLP) in sera of AD patients in comparison to healthy control 
subjects [22]. The increased antibody levels against different antibodies 
of the myelin sheath are probably secondary to myelin damage in AD 
patients. Of course, it is not quite clear whether the antibodies found in 
AD reflect a diffuse CNS injury or contribute to this injury. Nevertheless, 
the process of myelin damage probably leads to the presentation of 
new antigens to the immune system, and subsequent activation of T 
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and B cells. A hypothesis on how the immune system may be involved 
in the pathogenesis and progression of neurodegenerative disorders 
was proposed by Monahan in 2008 [23]. Activated B cells or specific 
autoantibodies may enter the CNS across dysfunctional BBB, produce 
cytokines which activate microglia and release autoantibodies. This 
may lead to further inflammation and subsequent cell death [23]. Thise 
conception would rather support the hypothesis that myelin damage 
precedes classical Aß and tau pathology in AD. Our results also support 
the hypothesis that not only neuronal cells but also oligodendroglial 
cells undergo neurodegeneration in AD, with subsequent presentation 
of new antigens to the immune system. In the light of data from animal 
studies on early demyelination of the hippocampal region, our results 
may, in the future, help determine biomarkers of early memory loss 
in AD. The hippocampus is among the first structures affected by AD 
pathology in the human brain. 

 Data from animal models also provide evidence on the interaction 
between tau pathology and myelin degradation. Firstly, tau protein 
hyperphosphorylation may occur during the remyelination process 
[24]. Recent findings suggest that myelin impairment may even precede 
neurofibrillary tangles deposition in certain cortical regions in AD. A 
defect in myelin biosynthesis has been found in AD subjects even in very 
early, preclinical stages of the disease, such as Braak stage I/II within the 
temporal cortex. Interestingly, hyperphosphorylated tau protein, which 
is a hallmark of axonal and neuronal loss, has also been found in other 
demyelinated disorders. 

What is interesting, the spread of AD pathology reflects the 
myelination pattern in reverse. Later myelinated brain regions, such 
as the temporal and frontal lobes, develop AD pathology first, whereas 
early myelinating regions, mainly motor and sensory systems may 
remain intact in AD until very late stages of the disease [25-27]. Some 
studies also suggest that AD is a developmental disorder, which cannot 
occur before myelination has been completed [26,28]. It is worth 
noting, that unlike the formation of neurons of the CNS, the process 
of myelination in humans progresses slowly throughout the childhood 
and young adulthood [29]. In humans, the process of myelination in the 
corpus callosum is not complete until the second decade of their lives 
[30] and in frontal lobes may not even be finished by the age of forty [31-
33]. More accurate data show that AD is rather a remyelination disorder 
[32], as a defect in myelin lipid biosynthesis has been found. 

Intriguingly, there exists an association between the presence of an 
ApoE4 allele and the level of myelin damage in AD. ApoE, a confirmed 
risk factor for the disease, plays an important role in the transportation 
of endogenously produced brain lipids and recycling of these lipids, 
which is crucial for myelin production, its maintenance and repair 
[31,34]. It has been proven that apoE4 allele carriers have lower levels 
of ApoE molecules in serum and brain tissue than non-carriers [35]. An 
Apo E4 allele decreases the formation of myelin in the human brain and 
promotes age-related myelin damage [36].  

In conclusion, data from recent studies suggest that Aß and tau 
proteins may potentially be products of myelin repair in AD instead 
of being the main underlying cause of dementia [9,31]. These data are 
also supported by the fact that previous attempts to control clinical 
symtomps of AD by removing Aß from the human brain have failed, 
although different agents turned out to be succesfull in eliminating Aß 
from the brain tissue. 

There also exists evidence for myelin damage in the normal aging 
brain [9,24,31]. Neverthelss recent data suggest that AD pathology is 
additionally affected by myelin damage [9]. Also neuroimaging studies 

of patients with MCI reveal white matter damage and myelin impairment 
in these patients, before the fifth decade of their lives [37]. 

In conclusion, although AD pathology has over the years been 
typically linked with neuronal degeneration, most recent data show 
that it is strongly associated with oligodendorcyte and myelin pathology 
[9,22,31]. Evidence comes from human MRI neuroimaging studies, 
but the finding is also supported by the presence of increased levels of 
different autoantibodies against proteins of the myelin sheath in sera of 
AD patients compared to healthy controls. There is emerging evidence 
that myelin plays a more important role in AD pathology than previously 
thought, butfurther serological, neuroimaging and pathological studies 
are necessary to explain the exact role of myelin in AD.
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