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Abstract

Objective: Log-transformations are commonly used to normalize chemical data. However, log-transformations do
not always normalize the data. Thus, the objective of this study was to recursively use Tukey’s exploratory
techniques to erect fences towards the data extremes until normality or near normality was achieved for the data
lying within these fences.

Design: Data from National Health and Nutrition Examination Survey for the period 2003–2004 for 27 variables
were used to conduct this study. Some of the 27 variables included for this study were: serum folate, serum
transferrin receptor, urinary perchlorate, serum polychlorobiphenyl (PCB) 44, PCB-28, PCB-87, and PCB-52.
Tukey’s exploratory techniques were recursively used to erect fences towards the data extremes until normality or
near normality was achieved for the data lying within these fences. Following this, robust techniques were used to
estimate statistical parameters for the reduced data lying within these fences. The statistical properties of the
reduced data so obtained were evaluated and compared with the original log-transformed data.

Setting: Cross-sectional data from National Health and Nutrition Examination Survey (NHANES) for the period
2003–2004 for 27 variables.

Subjects: 1790 to 8363 depending up on the variable of interest who participated in NHANES 2003-2004.

Results: The use of non-normal data for statistical analysis can lead to under- or over- estimation of the
measures of central tendency (means and geometric means) depending upon the comparative mix and magnitude
of the observations that are identified as potential outliers and trimmed from the lower and upper tails of the original
distributions to achieve normality. The standard deviations are always over-estimated and the widths of the
confidence intervals around the means are over-estimated. Additional insights into the demographic characteristics
of those which were trimmed from extreme tails can be very valuable.

Conclusion: To obtain correct estimates of descriptive data, it is worthwhile to temporarily trim certain percent
data (probably, < 5%) to achieve normality or near normality. An evaluation of these trimmed data can provide
insight into the characteristics for a given variable of the persons who have too low or too high concentrations of the
chemicals of interest.

Keywords: Cross-sectional studies; Persistent organic pollutants;
Nutritional variables; Blood metals; Urine metals; Phytoestrogens;
Outliers; Data transformations

Introduction
The distributions of most, if not all, chemical and environmental

variables are characterized by a few relatively large measurements, or
in other words, distributions of chemical and environmental variables
are positively skewed. For this reason, data for chemical and
environmental variables are assumed to be log-normally distributed
even though not all positively skewed distributions can be considered
to be mathematically log-normal. Since most statistical techniques
including t-test, analysis of variance, and regression analysis assume
normality of the distribution, it is necessary to transform log-normally
distributed variables to normality by taking logs of the original
measurements.

However, as will be seen in this paper, log-transformations do not
always achieve normality. Sometimes, log-normally distributed
variables still remain positively skewed or can become negatively
skewed after the log-transformations. Under these circumstances, it is
necessary to search for other techniques to achieve normality, or, if not
possible, to achieve near normality, since many statistical tests like t-
tests are robust to non-normality to some degree.

The most often used and discussed methodology to normalize data
in the literature is the power transformation methodology developed
by Box et al. [1]. Using this methodology a non-normal variable y is
transformed to a normal variable x = (yλ-1)/λ, where λ is the power
transformation parameter and must be estimated if not already known.
After the transformation, all analyses are carried out for x in place of y.
Clark et al. [2] have presented a simplified method to use Box-Cox
transformations. Other authors who have evaluated the applicability of
Box-Cox and other transformations are Coder et al. [3], Errecalde et al.
[4], Gasser et al. [5], Kingman and Zion [6], Montez-Rath et al. [7],
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Payton et al. [8], Ponikowski et al. [9], van Albada and Robinson [10],
and Volkova et al. [11].

To the best of our knowledge, the inferences based on x cannot
always be converted back to the original variable, y. For example, it is
unclear how to convert the value of the mean of x back to the mean or
a comparable parameter for the original variable y. The mean for y
cannot simply be back-transformed from the mean of x.

The issue of converting inferences based on x in a regression or any
other modeling situation may even be more complex. If the differences
between x for males and females are statistically significant, there is no
clear way to determine if the same occurs for y and if so, what is the
magnitude of the differences in the original scale. Some of the often
used transformations to normalize non-normal data are special cases
of Box-Cox transformations. For example, when λ=-1, it is equivalent
to reciprocal transformation, when λ= 0.5, it is equivalent to square
root transformation, and when λ=1/3, it is equivalent to cube root
transformation.

Mateu [12] used Box-Cox transformations to normalize three
environmental datasets, namely, for wind direction, SO2, and particle
concentrations. Normalization of data was achieved for wind direction
when λ=2, for SO2 when λ=0.5, and for particle concentrations when
λ=0.5. According to Mateu [13], if a transformation can achieve
symmetry, it is sufficient for practical purposes. Mateu [12]
recommended logit transformations for percents and proportions.

If the presence of outliers or extreme values is an issue, then log
transformation is a better choice than square root transformation
(http://www.unm.edu/~marcusj/datatransforms.pdf). However, square
root transformation was shown to perform better in achieving constant
variance of the residuals and normality of the distribution for percent
data [14].

Square root transformation has also been shown to stabilize
variance for the counts data [15]. However, log transformation as
compared to square root transformation was found to be more
effective in reducing the skew and leptokurtosis that characterize the
untransformed inter-individual EEG amplitude distributions [16].

Estimates of statistical parameters for the data that are not normally
distributed can be biased. In order to obtain unbiased estimates to the
degree it is possible, robust statistical techniques to estimate location
and scale parameters have been proposed. Computations of trimmed
and Winsorized means (http://www.statisticalanalysisconsulting.com/
measures-of-central-tendency-the-trimmed-mean-and-median/) are
two of the many techniques that have been proposed to obtain robust
estimates of location parameters. Trimmed means are computed by
trimming x% observations from each tail of the ordered data. X can
vary from 0.1% to as much as 25%. If X=25%, trimmed mean so
computed is based on the middle 50% of the data.

If an ordered data of size 20 is written as Y1, Y2, Y3…, Y18, Y19,
Y20, and if X=10%, then trimmed mean is based on observations Y3,
…,Y18. On the other hand, in order to compute Winsorized mean, first
observations Y1 and Y2 are set equal to Y3 and observations Y19 and
Y20 are set equal to Y18 and the Winsorized mean is computed for all
20 observations after the values of the observations Y1, Y2, Y19, and
Y20 have been modified. However, depending up the value of X, the
modified distribution used to compute Winsorized mean may became
fat tallied and as such, computation of Winsorized means may not
always be a good idea.

In this paper, if the normality is not achieved for the log-
transformed data, we approach the task of achieving normality or near
normality as an outlier detection problem followed by robust
estimation using trimmed means. However, instead of using same
value of X for both lower and upper tails, the value of X is allowed to
be different for lower and upper tails depending up on the results of
the outlier analyses as described later on.

In other words, we try to achieve normality by temporarily
trimming a certain number of the lowest and highest observations
from the data. Estimates of statistical parameters are then based on the
data that remains after certain observations have been trimmed from
the tails. For the purpose of this communication, dataset that remains
after certain observations have been trimmed from the tails of the
original dataset is called a reduced dataset.

The dataset containing observations that are trimmed from the
original dataset is called trimmed dataset for the purpose of this
communication. Robust estimation procedures are used for the
reduced dataset. For the purpose of this study, a modified trimmed
mean is computed. The advantages and drawbacks of this technique
are discussed. Recommendations are made about the applicability of
this technique under specific circumstances. Additional insight into
the data that can be achieved using this technique is also discussed

Material and Methods
We downloaded publically available data for about 100 chemical

variables from the National Health Examination and Nutrition Survey
(NHANES) for the years 2003–2004 (www.cdc.gov/nchs/nhanes/
nhanes2003-2004/lab03_04.htm). Data were downloaded for persistent
organic pollutants (POPS), nutritional variables, and urinary and
blood metals. Since, the percent values below the limit of detection
(LOD) imputed as LOD/√2 can affect computations of skewness and
also the log-transformation process, we used only those variables
which had less than one percent observations below the LOD.

This selection process provided data for 27 variables for analysis
purposes. A majority of these variables, 17, were measured in serum;
seven were measured in urine; two were measured in plasma; and one
was measured in the whole blood.

The sample sizes, skewnesses, and p-values for the Shapiro-Wilk test
of normality [17] for the log10-transformed data for these variables are
given in Table 1. The skewnesses prior to log10-transformation are also
given. Since, for all 27 variables used in the study the Shapiro-Wilk test
of normality W was statistically significant (p ≤ 0.01) for the log10-
transformed data, we used Tukey’s exploratory techniques [18] to
identify potential outliers. It should be noted that the W test computes
the skewness of the data and evaluates if the skewness of the dataset
was statistically significantly different from zero.

In order to use Tukey’s exploratory techniques, we computed, Q1,
the first quartile; Q3, the third quartile; IQR, the interquartile range
computed as IQR=Q3-Q1; K=M*IQR, where M is arbitrarily called the
fence multiplier; and lower fence FL=Q1-K; and upper fence,
FU=Q3+K. All observations in magnitude below FL and above FU
were considered potential outliers. When M=1.5, FL and FU are called
Tukey’s lower inner and upper inner fences respectively.
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Variable Sample
Size

Skewness for
untransformed
data

Skewness for
log10
transformed
data

p-value for
Shapiro-Wilk
test for
normality for
log10
transformed
data

Skewness of log10 transformed data with p-value for the test of
normality when the fence multiplier was

3 2.5 2 1.5 1 0.5

Blood Lead 8373 9.4 0.36 ≤ 0.01 0.34
(0.01)

0.31
(0.01)

0.25
(0.01)

0.22
(0.01)

0.07
(0.01)

0.04
(0.01)

Plasma
Homocysteine 7888 7 0.57 ≤ 0.01 0.38

(0.01)
0.31
(0.01)

0.23
(0.01)

0.15
(0.01)

0.05
(0.01)

0.01
(0.01)

Plasma
Methylmalonic Acid 7544 28.4 1.39 ≤ 0.01 0.65

(0.01)
0.53
(0.01)

0.38
(0.01)

0.34
(0.01)

0.17
(0.01)

0.13
(0.01)

Urine Creatinine 4449 1.2 -0.7 ≤ 0.01 -0.7
(0.01)

-0.69
(0.01)

-0.61
(0.01)

-0.5
(0.01)

-0.33
(0.01)

-0.23
(0.01)

Serum Vitamin B12 8267 27.8 0.43 ≤ 0.01 0.12
(0.01)

0.11
(0.01)

0.06
(0.04)

0.07
(0.03)

0.01
(0.01)

0.04
(0.01)

Serum Folate 8268 26.6 0.35 ≤ 0.01 0.2 (0.01) 0.13
(0.01)

0.09
(0.01)

0.03
(0.01)

0.04
(0.01)

-0.05
(0.01)

Red Blood Cell
Folate 8296 2.9 0.32 ≤ 0.01 0.31

(0.01)
0.28
(0.01)

0.25
(0.01)

0.15
(0.01)

0.11
(0.01) 0.1 (0.01)

Serum Transferrin
Receptor 2831 3.9 0.5 ≤ 0.01 0.37

(0.01)
0.27
(0.01)

0.18
(0.01)

0.03
(0.01)

-0.08
(0.01)

-0.01
(0.01)

Serum Vitamin C 7277 0.6 -1.86 ≤ 0.01 -1.24
(0.01)

-1.09
(0.01)

-0.91
(0.01)

-0.7
(0.01)

-0.53
(0.01)

-0.42
(0.01)

Urinary Daidzein 2594 13.1 0.24 ≤ 0.01 0.24
(0.01)

0.24
(0.01)

0.24
(0.01)

0.19
(0.01)

0.11
(0.01) 0.1 (0.01)

Urinary Equol 2590 21.5 0.48 ≤ 0.01 0.3 (0.01) 0.08
(0.01)

-0.06
(0.01)

-0.03
(0.15)*

-0.03
(0.01)

-0.02
(0.01)

Urinary
Enterolactone 2594 14.1 -0.91 ≤ 0.01 -0.8

(0.01)
-0.74
(0.01)

-0.67
(0.01)

-0.52
(0.01)

-0.36
(0.01)

-0.27
(0.01)

Urinary Genistein 2594 24.2 0.33 ≤ 0.01 0.33
(0.01)

0.31
(0.01)

0.29
(0.01)

0.22
(0.01)

0.15
(0.01)

0.13
(0.01)

Urinary Iodine 2526 30.1 0.16 ≤ 0.01 -0.19
(0.01)

-0.27
(0.01)

-0.26
(0.01)

-0.15
(0.01)

-0.1
(0.02)

-0.06
(0.01)

Urinary Perchlorate 2522 15.3 0.04 ≤ 0.01 0 (0.01) -0.04
(0.01)

-0.08
(0.01)

-0.15
(0.01)

-0.08
(0.01)

-0.07
(0.01)

Serum PCB 28 1790 23.1 0.49 ≤ 0.01 0.15
(<0.01)

0.08
(0.01)

0.03
(0.02)

-0.05
(<0.01)

-0.06
(<0.01) 0 (<0.01)

Serum PCB 44 1814 18 0.08 ≤ 0.01 0.26
(<0.01)

0.26
(<0.01)

0.16
(<0.01)

0.03
(0.01) 0 (<0.01) -0.01

(<0.01)

Serum PCB 49 1801 18.9 -0.43 ≤ 0.01 0.1
(<0.01)

0.14
(<0.01)

0.02
(0.15)*

-0.05
(<0.01)

-0.07
(<0.01)

-0.05
(<0.01)

Serum PCB 52 1821 21.4 0.09 ≤ 0.01 -0.03
(<0.01)

-0.03
(<0.01)

-0.08
(<0.01)

-0.16
(<0.01)

-0.12
(<0.01)

-0.1
(<0.01)

Serum PCB 66 1822 24.4 0.69 ≤ 0.01 0.42
(<0.01)

0.35
(<0.01)

0.27
(<0.01)

0.31
(<0.01)

0.2
(<0.01)

0.15
(<0.01)

Serum PCB 74 1822 6.5 0.57 ≤ 0.01 0.57
(<0.01)

0.57
(<0.01)

0.56
(<0.01)

0.52
(<0.01)

0.41
(<0.01)

0.33
(<0.01)

Serum PCB 87 1816 12.8 -0.88 ≤ 0.01 -0.9
(<0.01)

-0.92
(<0.01)

-1.07
(<0.01)

0.06
(<0.01)

0.08
(<0.01)

-0.17
(<0.01)
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Serum PCB 99 1801 15.3 0.66 ≤ 0.01 0.62
(<0.01)

0.59
(<0.01)

0.6
(<0.01)

0.46
(<0.01)

0.32
(<0.01)

0.19
(<0.01)

Serum PCB 118 1811 8.4 0.74 ≤ 0.01 0.74
(<0.01)

0.74
(<0.01)

0.69
(<0.01)

0.59
(<0.01)

0.45
(<0.01)

0.34
(<0.01)

Serum PCB 138/158 1820 7.3 0.23 ≤ 0.01 0.23
(<0.01)

0.23
(<0.01)

0.23
(<0.01)

0.22
(<0.01)

0.17
(<0.01)

0.09
(<0.01)

Serum PCB 153 1820 6.8 0.13 ≤ 0.01 0.13
(<0.01)

0.13
(<0.01)

0.13
(<0.01)

0.13
(<0.01)

0.09
(<0.01)

0.03
(<0.01)

Serum PCB 180 1820 4.7 -0.24 ≤ 0.01 -0.24
(<0.01)

-0.24
(<0.01)

-0.24
(<0.01)

-0.24
(<0.01)

-0.07
(<0.01)

-0.09
(<0.01)

*The distribution was normal

Table 1: Sample sizes, skewnesses for the untransformed and log10 transformed data with fence multipliers from 0.5 to 3.0 and p-values for
Shapiro-Wilk test of normality for the log transformed data.

As an example, when M=1.5, in a sample S={1, 12, 13, 15, 16, 18, 21,
24, 29, 71} of size 10, Q1=12.5; Q3=26.5; IQR=Q3-Q1=14;
FL=12.5-1.5*14=-8.5; FU=26.5+1.5*14=47.5. Thus, assuming M=1.5;
observations below -8.5 and above 47.5 were considered potential
outliers. For this sample, since there was no observation below -8.5,
there was no potential outlier on the lower side of the sample.
However, there was one observation 71 above 47.5 which was
considered a potential outlier. When M=0.5, FL=12.5-0.5*14=5.5 and
FU=26.5+0.5*14=33.5. Since there was one observation below 5.5 and
one observation above 33.5 in the sample, S, there were a total of two
potential outliers in the data. It should be noted that as M decreases,
the number of observations identified as potential outliers increases.
When M=1.5, there was only one potential outlier in the sample. When
M=0.5, there were two potential outliers in sample S. Higher values of
M lead to smaller number of observations identified as potential
outliers. Thus, higher values of M, for example, 1, will likely leave the
reduced dataset with larger variability than will a relatively smaller
value of M, for example, 0.5.

In the procedure proposed here, a specific value of M was used for
the original log10-transformed dataset. Potential outliers below FL and
above FU were trimmed from the original dataset, and the reduced
dataset was tested for normality by using the W test. If the reduced
dataset was found to be normally distributed, that dataset was
accepted. If not, a different value of M was used for the original log10-
transformed dataset. This process continued until a reduced dataset
was found to be normally distributed or near normally distributed, or a
decision was made to discontinue testing for normality as described
below.

The value of M we initially used varied from 3.0 to 0.5 in
decrements of 0.5. The p-values for the W test for each of the 27
datasets before and after applying M are given in Table 1. The reduced
dataset for which normality or near normality was achieved was
evaluated further for the distributional characteristics. The subsets of
the data that were below FL and above FU were also evaluated for their
demographic characteristics.

SAS Proc 9.3 (www.sas.com) was used to do statistical analysis.

Results
In the results presented below and throughout the manuscript,

percent observations trimmed refers to the percent observations

trimmed from the original dataset. For example, if there were 100
observations in the original dataset, and five observations were
identified as potential outliers and trimmed from the lower tail, and 10
observations were identified as potential outliers and trimmed from
the upper tail; then it will be said that a total of “15% observations were
trimmed, 10% were trimmed from the upper tail and 5% were
trimmed from the lower tail”. The use of the words “lower” and “upper”
tail always refers to the tails of the original log10-transformed data.

Distributions were not normal (Table 1) for any of the 27 variables
even after the log10-transformations (p ≤ 0.01). We could not find any
observable pattern in terms of the size of skewness before or after
log10-transformations that could be attributed to the matrices in
which these variables were measured. Log10-transformations did
substantially reduce skewness for all variables. For example, the
skewness of serum Vitamin B12 was reduced from 27.8 to 0.43 (Table
1). But, for six variables, namely, urinary creatinine, serum Vitamin C,
urinary enterolactone, PCB 49, PCB 87, and PCB 180, the distributions
became negatively skewed after the log10-transformations. As the
value of the fence multiplier, M, decreased, the absolute values of the
skewnesses also decreased. However, because of relatively large sample
sizes, even the smallest departures from the skewness of zero caused
the p-values for the Shapiro-Wilk test to remain below 0.05. For
example, when M=0.5, for serum PCB 153, the sample skewness was
0.03 but the p-value for the Shapiro-Wilk1 test of normality was still
<0.01 (Table 1). The values of M below 0.5 were not considered
because of the possible trimming of a substantial amount of data,
probably as much as 25% or more. For urinary equol, normality was
achieved when M=1.5, and for serum PCB 49 when M=2.0 (Table 1).
For serum folate and serum PCB 44, the distribution became
negatively skewed as M was reduced from 1.0 to 0.5 (Table 1). For
serum transferrin receptor, the distribution became negatively skewed
as M was reduced from 1.5 to 1.0 (Table 1). For urinary perchlorate,
the distribution became negatively skewed as M was reduced from 3.0
to 2.5 (Table 1). For serum PCB 28 and PCB 87, the distributions
became negatively skewed from positively skewed or vice versa as M
was reduced from 2.0 to 1.5 (Table 1).

For each of the variables for which skewness switched signs from
positive to negative or vice versa, further attempts were made to find a
value of M for which normality or near normality could be achieved.
For example, for serum folate and serum PCB 44, the values of M were
explored between 1.0 and 0.5 in decrements of 0.1. In addition, while
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the value of skewness remained negative for PCB 52 both at M=3.0 and
M=2.5, the skewness increased as M was decreased further. As such,
for PCB 52, a value of M between 3.0 and 2.5 was considered in
decrements of 0.1. The results are given in Table 2 for these variables.
The values of M for the urinary equol and serum PCB 49 were

accepted as given in Table 1 (1.5 for urinary equol and 2.0 for PCB 49).
For the other 18 variables, near normality was considered to be
achieved when M=0.5 or when M=1.0. Even though the absolute
skewness was lowest at 0.5, the value of 1.0 was preferable because too
much data may be trimmed before robust estimations when M=0.5.

Variable Fence Multiplier Skewness of the reduced dataset p-value for Shapiro-Wilk test of normality

Serum folate

0.9 0.03 0.01

0.8 0.014 0.01

0.7 -0.014 0.01

0.6 -0.03 0.01

Serum PCB 44

0.9 -0.009 <0.001

0.8 -0.027 <0.001

0.7 -0.019 <0.001

0.6 -0.026 <0.001

Serum transferrin receptor

1.4 0.026 0.01

1.3 0.013 0.01

1.2 -0.048 0.01

1.1 -0.074 0.01

Urinary perchlorate

2.9 0.003 0.01

2.8 -0.02 0.01

2.7 -0.02 0.01

2.6 -0.038 0.01

Serum PCB 28

1.9 0.017 0.016

1.8 -0.004 0.013

1.7 -0.014 0.009

1.6 -0.022 0.006

Serum PCB 87

1.9 -1.067 <0.001

1.8 -0.741 <0.001

1.7 -0.758 <0.001

1.6 -0.127 <0.001

Serum PCB 52

2.9 -0.031 0.001

2.8 -0.031 0.001

2.7 -0.031 0.001

2.6 -0.031 0.001

Table 2: Fence multipliers, skewness, and p-value for Shapiro-Wilk test of normality for selected variables.

For the variables given in Table 2 and for urinary equol and PCB 49,
the weighted means with their confidence intervals and standard
deviations before and after M were applied as well as the number and
percent of observations trimmed due to the application of fence
multipliers are given in Table 3. The means of the reduced data, i.e., the

data remaining after certain observations potentially identified as
outliers were trimmed by use of fence multipliers were higher or lower
than the original log-transformed data depending upon the mix of
observations trimmed from the lower and upper tails of the original
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data. For example when M=1.6, for log PCB 87, 16.4% observations
were trimmed but the mean of the reduced data was still higher.

The final mean was 0.797 ng/g compared to the original mean of
0.602 ng/g because, of the total of 16.4% observations that were
trimmed from the original data, 16% were from the lower tail and only
0.4% was from the upper tail. As would be expected, the standard
deviations of the reduced data were always lower than for the original
data. For example, the standard deviation of the reduced data for log

PCB 87 was 0.249, 49.6% lower than that of the original data, which
was 0.494. For this reason, the widths of the confidence intervals of the
means for the reduced data were always lower than that of the original
data.

The percent of observations trimmed to obtain the reduced sample
varied from 0.1% for urinary perchlorate to 16.4% for PCB 87 (Table
3). A relatively large percent of observations, 9.5%, were also trimmed
for serum folate.

Variable Original
N

Mean and
95%
confidence
intervals for
the original
log10-
transformed
data

Standard
deviation for
the original
log10-
transformed
data

Fence
Multiplier

Sample
sizes for
the reduced
data after
applying
the fence
multipliers

Mean and
95%
confidence
intervals for
the reduced
data after
applying the
fence
multiplier

Standard
deviation
for the
reduced
data after
applying
the fence
multiplier

Number and
percent
observations
trimmed from
the lower tail

Number and
percent
observations
trimmed from
the upper tail

Urinary Equol (ng/ml) 2590 0.904
(0.850-0.959) 0.604 1.5 2503 0.875 (0.827 -

0.923) 0.504 33 (1.3%) 54 (2.1%)

Serum Folate (ng/ml) 8268 1.085
(1.068-1.102) 0.223 0.8 7481 1.076 (1.064 -

1.088) 0.163 341 (4.1%) 446 (5.4%)

Serum PCB 49 (ng/g) 1801 0.896 (0.864 -
0.928) 0.261 2 1782 0.898 (0.864 -

0.933) 0.239 12 (0.7%) 7 (0.4%)

Serum PCB 52 (ng/g) 1821 1.210 (1.169 -
1.250) 0.268 2.9 1820 1.209 (1.169 -

1.250) 0.267 0 (0.0%) 1 (0.1%)

Serum PCB 44 (ng/g) 1814 1.098 (1.070 -
1.127) 0.249 0.9 1720 1.091 (1.064 -

1.117) 0.21 38 (2.1%) 56 (3.1%)

Serum Transferrin
Receptor (mg/ml) 2831 0.559 (0.549 -

0.570) 0.135 1.3 2786 0.555 (0.545 -
0.565) 0.122 5 (0.2%) 40 (1.4%)

Urinary Perchlorate
(ng/ml) 2522 0.508 (0.466 -

0.550) 0.395 2.9 2519 0.509 (0.468 -
0.550) 0.391 1 (0.0%) 2 (0.1%)

Serum PCB 28 (ng/g) 1790 1.476 (1.449 -
1.504) 0.219 1.8 1780 1.473 (1.446 -

1.501) 0.213 0 (0.0%) 10 (0.6%)

Serum PCB 87 (ng/g) 1816 0.602 (0.546 -
0.657) 0.494 1.6 1518 0.797 (0.770 -

0.825) 0.249 290 (16.0%) 8 (0.4%)

Table 3: Weighted means with 95% confidence intervals and standard deviations with and without application of fence multipliers for selected
variables.

Table 4 shows the weighted means, 95% confidence intervals of the
weighted means, and standard deviations before and after the fence
multipliers were used for the 18 variables not included in Tables 2 and
3. The number and percent observations which were trimmed to
obtain the reduced samples are given in Table 5. Whether the means of
the reduced data were higher or lower than the original log10-
transformed data depended on the mix of observations trimmed from
the lower and upper tails. For example, for blood lead (Table 4), while
the mean of the original log10-transformed data was 0.179 µg/dl, the
mean of the reduced data when M=0.5 was 0.150 µg/dL since 9.6% of
the observations were trimmed from the upper tail (Table 5). On the
other hand, for PCB 180 (Table 4), while the mean of the original log-
transformed data was 1.827 ng/g, the mean of the reduced data when
M=1.0 was 1.842 ng/g, since a majority of observations removed were
from the lower tail. In general, standard deviations of the original

log10-transformed data were greater than or equal to standard
deviations of the reduced data. The standard deviations were higher
when M=1 than when M=0.5.

The widths of the confidence intervals for the means of the original
log10-transformed data were greater than or equal to the widths of the
confidence intervals of the reduced data The widths were higher when
M=1 than when M=0.5. When M=1.0, the percent observations
trimmed to obtain the reduced samples varied from a very low of 0.3%
for PCB 153 to a high of 11.8% for serum Vitamin C (Table 5). The
percent observations trimmed for PCB congeners were much smaller
than for non-PCB variables. When M=0.5, the percent observations
trimmed to obtain reduced samples varied from 4.1% for PCB 180 to a
high of 21.5% for serum Vitamin C (Table 4).
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 Statistics for Original Log10-
Transformed Data

Statistics for Reduced Log10-Transformed Data
after Outliers have been Fenced Out with Fence
Multiplier, M=0.5

Statistics for Reduced Log10-Transformed Data
after Outliers have been Fenced Out with Fence
Multiplier, M=1.0

Variable Name
Sam
ple
Size

Mean with 95%
Confidence
Interval

Standar
d
Deviatio
n

Reduced
Sample Size

Mean with 95%
Confidence Interval

Standard
Deviation

Reduced
Sample Size

Mean with 95%
Confidence Interval

Standard
Deviation

Blood Lead
(ug/dl) 8373 0.179

(0.173-0.185) 0.292 7122 0.150 (0.146-0.155) 0.206 8071 0.161 (0.155-0.167) 0.257

Plasma
Homocysteine
(umol/l)

7888 0.852
(0.849-0.856) 0.181 6522 0.840 (0.837-0.842) 0.122 7566 0.841 (0.837-0.844) 0.155

Plasma
Methylmalonic
Acid (umol/l)

7544 -0.900 (-0.904 -
-0.895) 0.21 6036 0.931 (-0.934-0.920) 0.116 7008 -0.928 (-0.932 - -0.920) 0.151

Urine Creatinine
(mg/dl) 4449 2.039

(2.030-2.049) 0.315 3641 2.100 (2.093-2.106) 0.2 4170 2.082 (2.075-2.09) 0.258

Serum Vitamin
B12 (pg/ml) 8267 2.729

(2.724-2.733) 0.209 6800 2.724 (2.721-2.727) 0.133 7832 2.723 (2.719-2.727) 0.17

Red Blood Cell
Folate (ng/ml) 8296 2.394

(2.390-2.397) 0.16 6683 2.383 (2.381-2.386) 0.099 7760 2.385 (2.382-2.388) 0.129

Serum Vitamin
C (mg/dl) 7277 -0.073 (-0.081 -

-0.060) 0.308 5713 0.018 (0.014-0.021) 0.13 6424 0.007 (0.003-0.011) 0.169

Urinary
Daidzein
(ng/ml)

2594 1.855
(1.828-1.882) 0.711 2164 1.817 (1.796-1.838) 0.502 2497 1.827 (1.802-1.852) 0.636

Urinary
Enterolactone
(ng/ml)

2594 2.495
(2.468-2.521) 0.679 2077 2.635 (2.618-2.652) 0.391 2392 2.602 (2.582-2.623) 0.511

Urinary
Genistein
(ng/ml)

2594 1.517
(1.490-1.543) 0.696 2132 1.447 (1.427-1.467) 0.472 2480 1.478 (1.454-1.502) 0.609

Urinary Iodine
(ng/ml) 2526 2.199

(2.184-2.214) 0.385 2007 2.223 (2.213-2.233) 0.227 2350 2.215 (2.203-2.227) 0.299

Serum PCB 66
(ng/g) 1822 0.913

(0.900-0.927) 0.295 1489 0.875 (0.866-0.884) 0.181 1711 0.890 (0.879-0.901) 0.231

Serum PCB 74
(ng/g) 1822 1.402

(1.381-1.423) 0.458 1613 1.323 (1.306-1.341) 0.358 1785 1.377 (1.357-1.397) 0.428

Serum PCB 99
(ng/g) 1801 1.357

(1.338-1.376) 0.41 1521 1.286 (1.272-1.300) 0.283 1724 1.316 (1.299-1.332) 0.353

Serum PCB 118
(ng/g) 1811 1.514

(1.493-1.535) 0.46 1571 1.418 (1.402-1.435) 0.333 1750 1.473 (1.453-1.492) 0.408

Serum PCB
138/158 (ng/g) 1820 1.873

(1.848-1.897) 0.529 1696 1.834 (1.811-1.856) 0.466 1812 1.866 (1.842-1.890) 0.52

Serum PCB 153
(ng/g) 1820 1.982

(1.957-2.008) 0.553 1705 1.960 (1.937-1.984) 0.496 1815 1.978 (1.953-2.003) 0.547

Serum PCB 180
(ng/g) 1820 1.827

(1.797-1.857) 0.656 1745 1.843 (1.815-1.871) 0.599 1805 1.842 (1.813-1.871) 0.631

Table 4: Sample sizes, weighted means with 95% confidence intervals, standard deviations for original and reduced log transformed data, and
number and percent observation removed from the lower and upper tails for the reduced data.
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 Fence Multiplier = 0.5 Fence Multiplier = 1.0

Variable Name
Number (percent)
Observations Removed
from Lower Tail

Number (percent)
Observations Removed from
Upper Tail

Number (percent) Observations
Removed from Lower Tail

Number (percent) Observations
Removed from Upper Tail

Blood Lead (ug/dl) 445 (5.3%) 806 (9.6%) 52 (0.6%) 250 (3%)

Plasma Homocystein (umol/l) 591 (7.5%) 775 (9.8%) 71 (0.9%) 251 (3.2%)

Plasma Methylmalonic Acid
(umol/l) 556 (7.4%) 952 (12.6%) 79 (1%) 457 (6.1%)

Urine Creatinine (mg/dl) 572 (12.9%) 236 (5.3%) 260 (5.8%) 19 (0.4%)

Serum Vitamin B12 (pg/ml) 707 (8.6%) 760 (9.2%) 182 (2.2%) 253 (3.1%)

Red Blood Cell Folate (ng/ml) 715 (8.6%) 898 (10.8%) 187 (2.3%) 349 (4.2%)

Serum Vitamin C (mg/dl) 1194 (16.4%) 370 (5.1%) 790 (10.9%) 63 (0.9%)

Urinary Daidzein (ng/ml) 191 (7.4%) 239 (9.2%) 29 (1.1%) 68 (2.6%)

Urinary Enterolactone (ng/ml) 361 (13.9%) 156 (6%) 181 (7%) 21 (0.8%)

Urinary Genistein (ng/ml) 176 (6.8%) 286 (11%) 29 (1.1%) 85 (3.3%)

Urinary Iodine (ng/ml) 297 (11.8%) 222 (8.8%) 114 (4.5%) 62 (2.5%)

Serum PCB 66 (ng/g) 117 (6.4%) 216 (11.9%) 29 (1.6%) 82 (4.5%)

Serum PCB 74 (ng/g) 36 (2%) 173 (9.5%) 0 (0%) 37 (2%)

Serum PCB 99 (ng/g) 77 (4.3%) 203 (11.3%) 3 (0.2%) 74 (4.1%)

Serum PCB 118 (ng/g) 39 (2.2%) 201 (11.1%) 0 (0%) 61 (3.4%)

Serum PCB 138/158 (ng/g) 32 (1.8%) 92 (5.1%) 0 (0%) 8 (0.4%)

Serum PCB 153 (ng/g) 42 (2.3%) 73 (4%) 0 (0%) 5 (0.3%)

Serum PCB 180 (ng/g) 45 (2.5%) 30 (1.6%) 14 (0.8%) 1 (0.1%)

Table 5: Number and percent observation removed from the lower and upper tails for the reduced data.

Plasma methylmalonic acid was selected for a detailed demographic
evaluation of subjects in the lower and upper tails, because, for this
variable, a majority of the trimmed observations were in the upper tail
(6.1% vs. 1% when M=1, Table 5).

Vitamin C was also selected for a detailed demographic evaluation
of subjects in the lower and upper tails, because, for this variable, a
majority of the trimmed observations were in the lower tail (10.9% vs.
0.9% when M=1, Table 5). The results are given in Table 6.

For plasma methylmalonic acid, those subjects in the lower tail of
the distribution (Table 6), for both M=0.5 and M=1.0, were
predominantly females (62.2% when M=0.5, 70.9% when M=1), non-
Hispanic blacks and Mexican Americans (79% when M=0.5, 81%
when M=1), and aged ≤ 29 years old (74.8% when M=0.5, 69.6% when
M=1).

The distinction between the middle of the distribution and the
lower tail was much sharper when M=1 than when M=0.5. This might
influence the choice between M = 0.5 and M=1. On the other hand,
those who were in the upper tail were predominantly non-Hispanic

whites (64.8% when M=0.5, 68.3% when M=1), males (54.7% when
M=0.5, 57.1% when M=1), and aged 50+ years (63% when M=0.5,
68.9% when M=1).

More specifically (data not shown), 63% (when M=0.5) of those
who were in the lower tail were non-Hispanic black and Mexican
American males and females aged ≤ 29 years. However, when M=1,
26.6% of those who were in the lower tail were Mexican American
males aged 50+years (data not shown).

Thus, selection of M could bias the interpretation of the results. In
the upper tail, 46% were non-Hispanic white males and females aged
50+years when M = 0.5, and 51.6% when M=1.

For serum Vitamin C (Table 6), for both M=0.5 and 1.0, the subjects
who were in the lower tail were predominantly males (55.9% when
M=0.5, 57% when M=1), non-Hispanic whites (52.5% when M=0.5,
55.8% when M=1), and aged ≤ 29 years or 50+years (71.5% when
M=0.5, 62% when M=1). When M=1, the age group distribution in the
lower tail was similar, 31.6% for aged ≤ 29 years, 30.4% for those aged
30-49 years, and 38% who were aged 50+years.

Citation: Jain RB (2017) Distributional Characteristics of Selected Chemical and Environmental Variables: Data from NHANES 2003-2004.
Epidemiology (Sunnyvale) 7: 297. doi:10.4172/2161-1165.1000297

Page 8 of 12

Epidemiology (Sunnyvale), an open access journal
ISSN:2161-1165

Volume 7 • Issue 1 • 1000297



  M=0.5 M=1.0

Variable Demograp
hic Group

Number (%)
Observations in the
Middle of the
Distribution

Number (%)
Observations in
the Lower Tail

Number (%)
Observations in
the Upper Tail

Number (%)
Observations in the
Middle of the
Distribution

Number (%)
Observations in
the Lower Tail

Number (%)
Observations in
the Upper Tail

Plasma
Methylmalon
ic Acid

Males 2988 (49.5%) 210 (37.8%) 521 (54.7%) 3435 (49%) 23 (29.1%) 261 (57.1%)

Females 3048 (50.5%) 346 (62.2%) 431 (45.3%) 3573 (51%) 56 (70.9%) 196 (42.9%)

Non-
Hispanic
Whites

2456 (40.7%) 79 (14.2%) 617 (64.8%) 2835 (40.5%) 5 (6.3%) 312 (68.3%)

Non-
Hispanic
Blacks

1632 (27%) 260 (46.8%) 101 (10.6%) 1918 (27.4%) 40 (50.6%) 35 (7.7%)

Mexican
Americans 1498 (24.8%) 179 (32.2%) 157 (16.5%) 1743 (24.9%) 24 (30.4%) 67 (14.7%)

Others 450 (7.5%) 38 (6.8%) 77 (8.1%) 512 (7.3%) 10 (12.7%) 43 (9.4%)

≤ 29 Years 3346 (55.4%) 416 (74.8%) 226 (23.7%) 3845 (54.9%) 55 (69.6%) 88 (19.3%)

30-49
Years 1177 (19.5%) 108 (19.4%) 126 (13.2%) 1339 (19.1%) 18 (22.8%) 54 (11.8%)

50+ Years 1513 (25.1%) 32 (5.8%) 600 (63%) 1824 (26%) 6 (7.6%) 315 (68.9%)

Serum
Vitamin C

Males 2774 (48.6%) 667 (55.9%) 149 (40.3%) 3115 (48.5%) 450 (57%) 25 (39.7%)

Females 2939 (51.4%) 527 (44.1%) 221 (59.7%) 3309 (51.5%) 340 (43%) 38 (60.3%)

Non-
Hispanic
Whites

2242 (39.2%) 627 (52.5%) 234 (63.2%) 2608 (40.6%) 441 (55.8%) 54 (85.7%)

Non-
Hispanic
Blacks

1571 (27.5%) 247 (20.7%) 62 (16.8%) 1729 (26.9%) 147 (18.6%) 4 (6.3%)

Mexican
Americans 1469 (25.7%) 245 (20.5%) 52 (14.1%) 1614 (25.1%) 149 (18.9%) 3 (4.8%)

Others 431 (7.5%) 75 (6.3%) 22 (5.9%) 473 (7.4%) 53 (6.7%) 2 (3.2%)

≤ 29 Years 3063 (53.6%) 413 (34.6%) 167 (45.1%) 3374 (52.5%) 250 (31.6%) 19 (30.2%)

30-49
Years 1079 (18.9%) 341 (28.6%) 37 (10%) 1208 (18.8%) 240 (30.4%) 9 (14.3%)

50+ Years 1571 (27.5%) 440 (36.9%) 166 (44.9%) 1842 (28.7%) 300 (38%) 35 (55.6%)

Table 6: Number and percent observations in the middle of the distribution and in lower and upper tails by demographic variables for plasma
methylmalonic acid and serum Vitamin C when fence multiplier was 0.5 and 1.0.

This is another instance where the selection of M could lead to
different interpretations of the results. Those who were in the upper
tail (Table 5) were predominantly female (62.3% when M=0.5, 60.3%
when M=1), non-Hispanic white (63.2% when M=0.5, 85.7% when
M=1), and aged ≤ 29 years or 50+ years (90% when M=0.5, 85.8%
when M=1). More specifically (data not shown), more than 53% of
those who were in lower tail were male and female non-Hispanic
whites in all three age groups for M=0.5 as well as M=1. Among those
who were in the upper tail, 31.1% were non-Hispanic white females
aged ≥ 30 and 11.4% were non-Hispanic black males aged ≥ 50 when
M=0.5. When M=1, Mexican American males aged ≥ 50 and non-

Hispanic black males and females aged 30-49 years formed 67.5% of all
those who were in the upper tail.

From the variables in Table 2, we selected PCB 87 and serum folate
for a detailed study of demographic characteristics of those who were
in the lower and upper tails. For PCB 87, 16% of the subjects which
were trimmed were in the lower tail and 0.4% in the upper tail. For
serum folate, 4.1% of the subjects trimmed were in the lower tail and
5.4% were in the upper tail. The results are given in Table 7. For serum
folate (M=0.8), the subjects in the lower tail were predominantly males
(54.5%), non-Hispanic whites and blacks (71.5%), and those aged ≤ 29
years (45.5%). For serum folate (M=0.8), the subjects in the upper tail
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were predominantly females (59.2%), non-Hispanic whites (72.9%),
and those aged 50+years (63.9%). Specifically (data not shown), those
who were in the lower tail were non-Hispanic whites and non-

Hispanic males and females aged ≤ 29 years (32.8%). Those who were
in the upper tail were predominantly non-Hispanic white males and
females aged 50+ years (51.7%).

Variable M Demographic
Group

Number (%) Observations in the Middle of the
Distribution

Number (%) Observations in the
Lower Tail

Number (%) Observations in the
Upper Tail

Serum
Folate 0.8

Males 3716 (49.7%) 186 (54.5%) 182 (40.8%)

Females 3765 (50.3%) 155 (45.5%) 264 (59.2%)

Non-Hispanic
Whites 2965 (39.6%) 115 (33.7%) 325 (72.9%)

Non-Hispanic
Blacks 1996 (26.7%) 129 (37.8%) 50 (11.2%)

Mexican
Americans 1950 (26.1%) 66 (19.4%) 46 (10.3%)

Others 570 (7.6%) 31 (9.1%) 25 (5.6%)

≤ 29 Years 4315 (57.7%) 155 (45.5%) 127 (28.5%)

30-49 Years 1324 (17.7%) 106 (31.1%) 34 (7.6%)

50+ Years 1842 (24.6%) 80 (23.5%) 285 (63.9%)

Serum
PCB 87 1.6

Males 797 (52.5%) 144 (49.7%) 4 (50%)

Females 721 (47.5%) 146 (50.3%) 4 (50%)

Non-Hispanic
Whites 681 (44.9%) 156 (53.8%) 2 (25%)

Non-Hispanic
Blacks 355 (23.4%) 71 (24.5%) 4 (50%)

Mexican
Americans 361 (23.8%) 43 (14.8%) 1 (12.5%)

Others 121 (8%) 20 (6.9%) 1 (12.5%)

≤ 29 Years 655 (43.1%) 127 (43.8%) 4 (50%)

30-49 Years 341 (22.5%) 71 (24.5%) 4 (50%)

50+ Years 522 (34.4%) 92 (31.7%) 0 (0%)

Table 7: Number and percent observations in the middle of the distribution and in lower and upper tails by demographic variables for serum
folate and serum PCB 87.

For serum PCB 87, while males and females (Table 7) were almost
equally distributed in the lower and upper tails; there were 52.5%
males as compared to 47.5% females in the middle of the distribution.
While non-Hispanic whites were predominant in the lower tail
(53.8%), non-Hispanic blacks were predominant in the upper tail
(50%). The distribution of age groups was not substantially different in
the lower tail than in the middle of the distribution. Non-Hispanic
white males and females aged 50+years accounted for 23.8% of the
subjects in the lower tail.

Discussion
We have described a simple method based on Tukey’s fences to

achieve normality or near normality when log10-transformations of
chemical data do not achieve normality. This method involves
identifying and trimming observations from the lower and upper tails
of the distribution that may hinder achieving normality after log10-

transformations. The reduced dataset obtained after trimming certain
observations from the lower and upper tails had means which could be
smaller or larger than the original log10-transformed data depending
upon the percent mix and magnitude of the observations that are
trimmed from the lower and upper tails. For example, when a large
majority of observations were trimmed from the lower tail as
compared to upper tail (16% vs. 0.4%), the means of the log10-
transformed reduced data for PCB 87 (Table 3) was higher
(mean=0.797 ng/g, geometric mean (GM)=6.3 ng/g) than for the
original log10-transformed dataset (mean=0.602 ng/g, GM=4.0 ng/g);
the GM for the trimmed dataset was more than 50% higher. On the
other hand, when a majority of observations that were trimmed from
the upper tail (Table 4, M=0.5) as compared to the lower tail (11.1% vs.
2.2% for PCB 99); the mean for the reduced dataset was lower than for
the original log10-transformed dataset. For example, the mean for PCB
99 for the reduced dataset was 1.418 ng/g (GM=26.2 ng/g) as
compared to the mean for the original data which was 1.357 ng/g
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(GM=22.8 ng/g); the GM of the reduced dataset was about 20% lower
than for the original dataset. Thus, statistical values from the data
which are not normal can lead to under- or over-estimation of the
measures of central tendency such as means or geometric means.

Conversely, as expected, we found the estimates of dispersion, for
example standard deviations, were always lower for the reduced
dataset than for the original non-normal dataset. For example, for PCB
87 (Table 3), standard deviation for the reduced dataset was 0.249
(geometric standard deviation=1.77) while for the original dataset, it
was 0.494 (geometric standard deviation=3.12) or the geometric
standard deviation of the reduced dataset was about 43% lower than
that of the original dataset.

The principal issues with the approach we proposed to achieve
normality or near normality are (i) what percent of data from the
original dataset can be ignored/trimmed to obtain robust estimates, (ii)
what is the cost if no further analysis can be done on the data that are
trimmed from the lower and upper tails, (iii) what should be done with
the data trimmed from the lower and upper tails, and (iv) what
additional information or insight can be achieved by studying the
observations that form trimmed data. It is not simple to determine the
percent from the original dataset that can be ignored/trimmed to
achieve normality or near normality. Individual researchers must use
additional clinical insight and input to decide which variables and the
percent of data that can be trimmed without unacceptably altering the
dataset. For example, for the variables in Table 3, there were only a few
observations that needed to be trimmed from PCB 49, PCB 52, serum
transferrin receptor, urinary perchlorate, and PCB 28 to achieve near
normality; in these cases, the outliers can be ignored. In general, loss of
≤ 5% of the original dataset may not be substantial. But it depends up
on the individual research issues involved. However, if a large majority
of observations are trimmed from one tail compared to the other, there
may be some information contained in the trimmed data that should
not be ignored. This was probably the case with PCB 87 (Table 3) for
which 16% out of the total of 16.4% of the observations which were
trimmed were from the lower tail. It may be important to understand
the demographics, residential location, dietary habits, and risky
behaviors of the subjects trimmed from the lower tail to understand
which of these factors might lower the concentration of the variable
under consideration. While we did not evaluate the residential
conditions (for example, industrialized vs. non-industrialized areas),
their dietary habits (for example, consumption of fatty fish that may
have exposed them to excessive PCB levels), or behavior (for example,
smoking and/drinking) of these 290 subjects, we did use 24
demographic groups (2 gender × 4 race/ethnicity × 3 age groups) to
more accurately identify them. By doing this, we found that 69 (23.8%)
of them were non-Hispanic white males and females aged 50+ years,
and 87 (30%) were non-Hispanic white males and females aged ≤ 49
years; 44.9% of the total population were non-Hispanic whites in the
middle of the distribution. It would be informative to investigate the
differences in residential, dietary, and behavioral factors between those
non-Hispanic whites in the middle of the distribution and those who
are in the lower tail. Similar evaluations could be useful if there are a
substantial number of subjects which are trimmed from the upper tail.

Another question concerns the differences in the outcome of
statistical analysis when the non-normality of the log-transformed data
is ignored and analyses are carried out as if the log-transformed data
were normal. We have already shown that the GM of the data may be
under or over-estimated and the geometric standard deviation will
always be over-estimated. Statistically significant differences

discovered for original non-normal log10-treansformed may become
statistically insignificant for the normal or nearly normal for the
reduced data and vice versa. It is not impossible for the direction of
statistically significant differences to be different between original and
reduced dataset. Also, it is difficult to generalize what will happen to
the regression coefficients when non-normal log-transformed data are
used in model fitting. The results of this occurrence will depend up on
the degree of non-normality of the dependent variable, the number of
covariates, the total number of cells in the data, the cell sizes, and other
independent variables in the model and their distributions.

In this study, we implicitly assumed that a single distribution will be
sufficient to describe all demographic groups. There may be
circumstances when this may not be true, for example, different
demographics groups, for example, non-Hispanic blacks and Mexican
Americans may assume different distributions, or in other words the
total population may be a mixture of several distributions. If that is the
case, each individual distribution should be analyzed separately by
using the methodology proposed here.

While we described the demographic characteristics of the
distributional tails of methylmalonic acid, Vitamin C, PCB 87, and
serum folate, other characteristics of tails should also be looked into,
for example, how their dietary habits are different from those who are
in the middle of the distribution.

The outlier detection methodology we proposed to normalize or
nearly normalize the data is simple, but it is also crude. However, it
affords us an opportunity to convert inferences which are based on
normalized log-transformed reduced data.

Better methods to normalize data, for example, Box-Cox
transformations have been proposed. However, until the issue of
convertibility of estimated parameters for the transformed data using
Box-Cox transformations to original scale can be resolved, data that
remains non-normal after log-transformation can be normalized or
nearly normalized using Tukey’s exploratory procedures as defined
here. This may, in fact, lead to additional insight into the data
regarding the subjects at the tails of the distributions. Such, insight
may not be possible using Box-Cox transformations.

The use of alternate non-parametric methods has been
recommended when the distribution of the data to be analyzed is not
normal (http://blog.minitab.com/blog/adventures-in-statistics-2/
choosing-between-a-nonparametric-test-and-a-parametric-test).
However, before succumbing to this temptation, what non-parametric
methods actually do needs to be understood. Essentially, non-
parametric methods rank order the data before attempting to do any
analysis. For example, let us see we need to compare the means of two
datasets, say, X with observations {3, 12, 21, 34, 231} and Y with
observations {2, 9, 23, 39, 49}. Then, with use of a non-parametric
method, they will be ranked XR={2, 4, 5, 7, 10} and YR={1, 3, 6, 8, 9}.
The sum of ranks for the two datasets will be ∑XR=28 and ∑YR=27.
Then, by one or the other non-parametric methods, for example,
Wilcoxon Rank SumTest, ∑XR will be compared with ∑YR and p-value
for the test of statistical significance will be computed which will
inform whether or not the “means” of the two datasets are statistically
significantly different. To the best of my knowledge, there is no way to
indicate by what magnitude X and Y are different in the original scale.
In the opinion of this author, drawing conclusions based on ranks
rather than the original scale is a serious drawback. In the clinical
sciences, it is essential to know the differences in the original scale than
in the scale based on ranks. The comparative powers of parametric vs.
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non-parametric tests is not an issue that should solely be used to make
a judgment about the appropriateness of a statistical test of
significance. Consequently, this author prefers to use parametric tests.

Transformations other than log transformation have been proposed
to reduce right skewness of the data. It should be noted that the main
issue with chemical and environmental data is the skewness of the data
and only those transformations that reduce the skewness should be
considered. Certain transformations like 1/X changes the skewness of
the data from right skewed to left skewed and vice versa and as such
are not of use for analyzing chemical and environmental data. Log
transformations are not always capable of normalizing data but the use
of Tukey’s fences along with log transformations as described in this
communication, can achieve near normality, if not normality of the
data.
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