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Introduction
The basal ganglia-supplementary motor area (BG-SMA) loop is 

thought to be involved in a number of stereotypical and spontaneous 
behaviors including walking by inducing the circuitries of pattern 
generators in the brainstem and spinal cord [1-5]. In Parkinson’s 
disease (PD), anticipatory postural adjustments (APA) during 
voluntary stepping were found to be reduced after the area over the 
SMA underwent 1-Hz repetitive transcranial magnetic stimulations. 
The severity of PD symptoms was negatively correlated with APA 
duration. Stepping performance was not affected with stimulation of 
the dorsolateral premotor cortex [6].

As the disruption of the BG-SMA system increases with the 
progression of PD, patients become more reliant on the use of vision 
to move around. The reasons are still unclear but several hypotheses 
have emerged lately. For example, one possible benefit of visual cues 
is that it may help PD individuals to focus on their walking [7-12] 
possibly by aiding the ability to switch cognitive sets and holding 
short-term memory [13,14] or via greater cortical involvement [11,15-
19].

The effect of visual cues in improving walking may occur 
spontaneously by circumventing the endogenous preparatory or set-
related stage of motor control [20-22] which is abnormal in PD [13,23]. 
The spontaneity is also somewhat validated by clinical observations 
in individuals with PD. Providing horizontal but not vertical or 
diagonal lines on the floor serves as a visual aid which helps overcome 
the phenomenon of shuffling gait or freezing when the individual 
attempts to walk [24]. It is not clear however, why transverse but not 
parallel lines are effective in triggering the walking [25,26]. Cadence 
increased more than controls when PD subjects walked while looking 
down at transverse lines. The increased cadence was accompanied 
by enhanced activation of the right lateral premotor region [27]. The 
beneficial effects of visual cues are confusing because they sometimes 
produce the opposite effect. PD patients are known to involuntarily 

slow down or stop walking when nearing a doorway [28,29]. 
Handwriting is larger when it is carried out with eyes closed [30].

Other studies suggest that the beneficial effect of visual cues on 
walking may be derived from the use of different neural pathways 
such as the cerebellar-premotor circuitry [27,31-34] including inputs 
from the superior parietal region [35] which is thought to enable 
visually-guided control of lower-body movements [36] when the 
basal-ganglia-supplementary connections are circumvented in PD 
[37-39]. Besides proprioceptive signals from the spinocerebellar tract 
[40], the cerebellum cortex also receives extensive visual signals from 
the superior colliculi, pretectal areas and lateral geniculate body. 
These neurons project to the cerebellar cortex via the purkinje and 
mossy fibres which convey slow- and fast-moving visual stimuli 
respectively [41]. 

The phenomenon of freezing in PD is thought to be related to 
irregularities of the frontal [42,43], brainstem [44-46] visual systems 
[47,48], and engrained synchronization of the basal ganglia system 
[49-51]. Bradykinetic gait including reduced step length is therefore 
thought to be a harbinger of things to come [52]. However, since not 
every patient goes on to develop dementia or freezing, the mechanism 
of visually-incited walking remains mysterious. 

A number of studies have attempted to determine the effects 
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of visual cues on improving walking performance in PD. These 
experiments included verbal prompting and practice trials, making 
it unclear how the visual cues themselves might have helped improve 
their walking. Clinicians often have to strike a delicate balance 
between allowing patients to explore the interactions between a 
walking aid and the surrounding workspace versus providing intense 
practice with detailed instructions and verbal cues. The former can 
lead to bad habits setting in while the latter can result in frustration 
and noncompliance. A better understanding of how visual aids can 
improve walking performance spontaneously would thus provide the 
needed scientific evidence of their beneficial effects which can then be 
augmented with practice and instructions. 

In the current study, subjects viewed virtual contrasting tiles while 
walking a linear trajectory without overt instructions or practice in 
order to determine the exclusive effect of the visual cues, as opposed 
to goal-oriented walking based on explicit instructions or practice 
[16,53-61]. The virtual visual cues in the current study are based on a 
closed-loop (feedback) model of stimulating the visual system [62,63]. 
The cues are synchronized to the speed of each subject’s forward 
advances but in the reverse direction. This imparts to the subject the 
perception of walking across stationary tiles (Figure 1). This mode 
of control keeps in check of any unwanted perception of central or 
peripheral visual flow from the cues as in the case of an open-loop 
system. In such a system, the cues move independently of the subject’s 
motion with the objective of augmenting or inducing the visual system 
and locomotor pattern generators [64]. The potential benefits of open-
loop systems however, are offset by their obvious drawback. Open-
loop schemes must dabble with the tricky challenge of enhancing 
walking while simultaneously creating conflicting sensory inputs to 
the central integrative mechanisms. Resolution of sensory discord is 
known to be inefficient in PD [65-71].

We hypothesized that the closed-loop visual cues will produce an 
improvement in walking performance in PD subjects in non-freezing 
moderate to more severe stages of the disease without incorporating 
a significant practice or learning component into the activity [72]. In 
particular, we expect the first step (step initiation) to occur faster. It 
is possible however, that the visual cues may also be distracting [73] 
and cause subjects to slow down. Subjects in the early stages of the 

disease who did not have significant walking impairments were also 
studied to determine the effects of the visual cues as a function of 
disease severity.

Materials and Methods
Subjects

47 subjects diagnosed with idiopathic Parkinson’s disease (PD) in 
their usual anti-PD drug regimen participated in the study. The study 
was approved by the institutional review board. 26 were classified as 
early-stage Hoehn & Yahr (H&Y) 1-2 (17 men and 9 women) while 
21 subjects were classified as moderately-severe H&Y 2.5-4 (13 men 
and 8 women) [74]. Subjects averaged 68.8 +/- 7.9 years old with 
8.1+/- 5.4 years disease duration. Freezing was not indicated in any 
of the subjects, nor was it observed during testing. Details of subjects’ 
characteristics are summarized in Table 1.

Materials

The visual device used in this study is the GaitAid Virtual Walker™ 
closed-loop system [75]. It has an eyeglass goggle component, dual 
earphones, and battery source. Earphones which provide auditory 
clicks also come as part of the device and can be used in conjunction 
with the visual cues if desired. The battery source is worn on the mid-
lateral aspect of the subject’s hip and contains a tri-axial accelerometer 
system. When the device is turned on, virtual visual cues in the 
form of tiled flooring can be seen through the lenses along the nasal 
visual field. The device operates in the closed-loop mode in which the 
accelerometers detect the subject’s vertical motions and move the tiled 
flooring accordingly. The virtual tiles are displayed as black and white 
squares arranged in two strips of alternating color. They are designed 
to mimic the real thing in that they not only gradually decrease in size 
as they lay further away from the subject but the vertical edges are also 
angled accordingly (Figure 1). As the subject walks, the nearest and 
largest pair of tiles disappears and is replaced by the next pair ahead 
while expanding to the same size as the disappearing pair. Adjacent 
pairs of tiles go through the same replacement algorithm. The overall 
visual effect is that the speed of the tile movements feels proportional 
to the subject’s movements. The tiles appear to be stationary and the 
subject perceives walking over them [62,63].

Procedures

All instructions about what to do during the experiments were 
explained to the subjects while they were seated. Subjects were then 
familiarized to the goggle still sitting in the chair. They moved their 
head around while viewing the device that was alternately turned On 
and Off several times. Subjects were told that during testing, they were 
to walk at their comfortable pace looking ahead (i.e. not to stare down 
at their feet) and to keep walking until asked to stop. Subjects then 
stood up and the first trial was administered immediately. Practice 
trials were not allowed, i.e. the first trial of each visual condition 
was the first time subjects experienced them walking. Each visual 
condition (On versus Off) was dispensed thrice in alternating order 
with the starting condition counterbalanced among the subjects. 
Subjects wore the goggle the entire time during the experiment. In 
each trial, subjects’ walking performance over 9.14 meters (30 feet) of 
level and unobstructed surface was videotaped for blinded analyses 
afterwards. The primary tester walked with the subject but slightly 
behind in order to avoid providing any visual feedback or interference 
to the subject. A gait belt was applied around the subject’s waist to 
ensure safety. 

Figure 1: Close-loop virtual tile projection. Images from the GaitAid Virtual 
Walker™ visual cueing device (insert [75]) superimposed onto the visual scene. 
The virtual system employs the close-loop mode of control. As the subject walks 
forward, the tiles move backwards in direct proportion to the subject’s speed. 
The tiles are enlarged for illustration. In reality, they occupy a narrow strip of 
the subject’s nasal field of vision. Left insert figure included with permission of 
MediGait Ltd [119].
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Data analyses

The primary outcome measures were the change in walking 
kinematics: duration of first step (step initiation), duration of 
walking over 9.14 meters, step length, walking speed and cadence. 
They were calculated based on the distance walked, the number of 
steps taken and the duration of walking. Changes were quantified as 
percent-change values by calculating the difference between walking 
performance with the visual cues On versus Off divided by visual cues 
Off. The group mean of the first trial and average of three trials in each 
kinematic measure was then subjected to a one-sample two-tailed 
t-test to test the effect of the visual cues against the null hypothesis 
(i.e. zero percent change in performance between visual cues Off and 
On). 

Secondary outcome measures included the use of Pearson simple 
linear correlation analyses to determine the associations among the 
walking kinematic variables and disease profiles: disease severity 
[76], disease duration, postural instability [77], quality of life [78,79] 
and cognitive state [80]. Additional secondary analyses included 
comparing the two groups of subjects using independent t-tests. 
In order to increase the power of detecting group differences, no 
corrections to were made to minimize the inflated Type I error. The 
alpha level for the test of significance was set at p < .05 in all cases. 
All analyses were carried out with the GraphPad Prism software 
(GraphPad Prism v5.04, GraphPad Software Inc., CA).
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Cues Off Cues On % 
Change

Effect 
size

95% CI

Step 
Initiation 
(s)

T1 1.23 (.35) 1.21 (.52) -1.6 .05 -14.8 to 11.7
Avg 1.17 (.32) 1.10 (.35) -6.2* .21 -11.5 to -.9

Step 
Length 
(m)

T1 .48 (.16) .47 (.17) -4.1* .10 -8.1 to -.1
Avg .50 (.16) .49 (.17) -2.8* .10 -5.1 to -.5

Walking 
Speed 
(m/s)

T1 .83 (.29) .80 (.30) -5.2* .10 -10.3 to -.1
Avg .87 (.29) .88 (.32) -0.8 .03 -6.4 to 4.8

Cadence 
(steps/
min)

T1 102.01 
(15.22)

100.72 
(19.16)

-1.6 .08 -5.6 to 2.3

Avg 104.80 
(16.31)

103.03 
(17.94)

-1.8 .10 -5.4 to 1.9

Table 2: Effect of closed-loop visual cues on the change in walking kinematics in 
the Hoehn & Yahr 2.5-4 group. % change is expressed as a ratio of visual cues 
turned On minus Off and divided by Off. T1, first trial; Avg, mean of three trials. 
Effect size is based on Cohen’s d [106]. *p < .05 compared to the statistical null 
hypothesis.

Step Length (m) Walking Speed 
(m/s)

Cadence (steps/
min)

T1 Avg T1 Avg T1 Avg
Step 
Initiation 
(s)

T1 0.016 -0.057 -0.356 -0.429 -0.511* 0.061
Avg 0.126 0.004 -0.159 -0.451* -0.358 0.214

Step 
Length 
(m)

T1 - - 0.711* 0.392 -0.074 -0.148

Avg - - 0.454* 0.414 -0.181 -0.127
Walking 
Speed 
(m/s)

T1 - - - - 0.646* -0.064
Avg - - - - 0.427 0.510*

Table 3: Association among the changes in walking performance as a function of 
the visual cues in the H&Y 2.5-4 group. T1, first trial; Avg, mean of three trials. * 
indicates a significant association, p < .05.

ISSN: 2165-7025  JNP an open access journal 

10.4172/2165-7025.1000101

http://dx.doi.org/10.4172/2165-7025-1000101


Citation: Chong R, Lee KH, Morgan J, Mehta S, Griffin J, et al. (2011) Closed-Loop VR-Based Interaction to Improve Walking in Parkinson’s Disease. 
J Nov Physiother 1:101. doi:

Page 4 of 7

Volume 1 • Issue 1 • 1000101
J Nov Physiother

Results
In the H&Y stages 2.5-4 group, with the visual cues turned On, 

subjects’ first step initiation was faster, they took shorter steps and 
walked slower (p < .05) without changing their cadence. The visual 
cues produced the strongest effect in speeding up step initiation 
(Table 2). The correlations among the walking kinematics ranged 
between -.511 and .711. Changes in step length covaried positively 
with walking speed (p < .05, Table 3). In addition, faster step initiation 
was associated with a higher feelings of depression and incidence of 
muscle cramps (p < .05) while a larger decrease in step length was 
associated with a higher degree of bradykinesia and disease severity 
(p < .05). Faster cadence was associated with a higher degree of body 
bradykinesia and communication problems (p < .05, Table 4). 

The H&Y stages 1-2 group did not show a change in any of the 
walking kinematics as a function of the visual cues. Compared to the 
H&Y stages 2.5-4 group, average step initiation (1.13 ± .25 s versus 1.17 
± .32 s), walking speed (.91 ± .21 m/s versus .83 ± .29 m/s) and cadence 
(99.73 ± 9.66 steps/min versus 104.80 ± 15.31 steps/min) were similar 
when walking without the visual cues whereas step length was shorter 
(.5 ± .16 m versus .57 ± .09 m, p =.034, 1-tailed).

Discussion
The results of the study demonstrate that close-loop virtual 

visual cues can spontaneously change the walking kinematics in 
individuals with moderately severe PD. These changes occurred in 
the absence of explicit instructions and practice [81,82]. They did not 
however, translate into what one would typically consider to be better 
performance in terms of normalizing step length and walking speed. 

Walking and other over-learned movements no longer become 
instinctive in PD but require effort [83-87] especially in tasks that 
require changing set [13,57,66,68,72,88-91]. The faster step initiation 
could therefore arise from the visual cues substituting the defective 
basal ganglia system in changing set from standing to taking the 
first step. Cadence is generally higher in PD [92,93] though it did not 
change as a function of the visual cues in the current study. Steps are 
typically shortened in PD, possibly because maintaining a normal 
step necessitates higher muscular effort and coordination [13,94]. In 
terms of the decreased walking speed, it did not relate with any of 
the disease profiles. Walking speed is a complex gait parameter that is 
not associated with components of motor skills such as force control, 
agility, or weight transfer [95].

The step length and walking speed are similar to those reported 
in the literature for moderate to severe PD [96,97] and higher than 
PD subjects who withheld their anti-PD medications [98]. The ability 
to modulate step initiation holds promise for improving walking in 
PD [99] as cognitive strategies could then be incorporated into the 
practice by intentionally increasing step length and speed [61,100-
105].

Although the magnitudes of change were small by statistical 
standards [106], they are remarkable considering that subjects were 
completely naïve to the visual cueing device and the short distance that 
subjects walked during the tests. The significant decreases in walking 
speed and step length likely reflects a combination of the distracting 
visual cues and an apparent effort to walk more carefully since the 
cues do reduce the central visual passage. The novelty of wearing the 
goggle likely caused the PD subjects to engage in dual-tasking. It is 
known that many of them have trouble with such encounters [107-112]. 
The potential interference is especially illuminating considering that 
the visuospatio-perceptual system must process both the visual cues 
and the surrounding concurrently [73,113,114]. Even the instruction 
manual recommends walking slowly in the beginning and to stop if 
unsure [115].

The findings of the association among the walking gait changes 
and disease profiles are consistent with the cognitive mechanisms 
underlying the beneficial effects of visual cues. The associations 
between the magnitude of decrease in step length and the higher level 
of postural bradykinesia and severity of disease could be a reflection 
of the increasing difficulty in modulating muscle forces as a result 
of disease progression. As the disease worsens, mental states such as 
depression and physical impairments such as muscle fatigue, cramps 
or difficulty getting dressed have accumulating effects on PD patients’ 
overall quality of life including fear of falling [77,116-118]. These 
factors may hamper efforts to provide meaningful rehabilitation 
techniques to retain the ability to walk in these people [59].

The failure to find any effect of the visual cues in the H&Y 1-2 
group was expected as hypothesized. These subjects have not yet 
developed overt problems with their walking. The null outcome was 
therefore not surprising. 

In conclusion, the current study demonstrates that in the absence 
of instructions and practice, closed-loop virtual visual cues can 
spontaneously increase step initiation speed but decreased walking 
speed and step length in patients with moderately severe PD. The 

UPDRS H&Y Postural Instability MMSE Quality of Life
Total Brady RAP-

ID-1
RAP-
ID-2

RAP-
ID-3

PDQ8 PDQ8-1 PDQ8-2 PDQ8-3 PDQ8-4 PDQ8-5 PDQ8-6 PDQ8-7 PDQ8-8

Step 
Initiation 
(s)

T1 0.11 -0.06 0.08 -0.15 0.16 0.04 0.17 0.23 0.02 0.09 0.34 -0.13 0.18 0.20 -0.27 0.41

Avg 0.02 0.06 0.04 0.29 0.14 0.21 0.21 0.34 0.31 0.50* 0.59* 0.04 0.21 0.02 -0.50* 0.23
Step 
Length 
(m)

T1 0.12 -0.39 -0.16 -0.10 0.07 -0.05 0.13 -0.04 -0.26 0.06 -0.18 -0.18 -0.13 0.13 -0.29 0.01
Avg -0.17 -0.72* -0.41* -0.31 -0.11 -0.10 0.06 -0.26 -0.36 0.10 -0.38 -0.07 -0.22 0.11 -0.26 -0.11

Walking 
Speed 
(m/s)

T1 0.09 0.01 0.09 0.10 0.21 0.11 -0.09 -0.04 0.00 -0.03 -0.12 -0.03 -0.20 -0.17 -0.09 0.08
Avg -0.34 -0.15 -0.11 -0.12 0.05 -0.06 -0.10 -0.38 -0.31 -0.28 -0.38 -0.23 -0.28 -0.33 -0.09 0.03

Cadence 
(steps/
min)

T1 -0.02 0.431* 0.16 0.14 0.13 0.17 -0.32 -0.16 0.20 -0.17 -0.14 0.24 -0.30 -0.45* 0.13 -0.09
Avg 0.235 0.05 -0.09 0.173 -0.12 0.13 0.08 0.18 0.30 0.36 0.12 0.40 -0.05 0.07 -0.01 -0.12

Table 4: Association between subjects’ characteristics and change in walking performance in the H&Y 2.5-4 group. T1, first trial; Avg, mean of three trials. * indicates a 
significant association, p < .05. Abbreviations are the same as in Table 1.
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increased step length and walking speed reported in previous studies 
from using visual cues is probably due to cognitive strategies and 
practice. 
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