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Abstract
The distinct temporal pattern of stroke occurrence in humans has been recognized for decades; yet, the reason 

underlying the temporal nature of stroke is not completely understood. Several exogenous factors such as seasonal 
variation, physical activity, diet and sleep/wake cycles can influence stroke occurrence. Furthermore, it has been 
increasingly recognized that there are several endogenous physiological functions such as blood pressure, autonomic 
nervous system activity, and coagulation that show temporal variance and ultimately influence susceptibility to stroke. 
It was long believed that the neurons within the Suprachiasmatic Nucleus (SCN) controlled all of the body’s circadian 
rhythm cycles serving as the “master clock”. However, circadian gene expression is inherent to almost every cell in 
the body, controlling cellular metabolism, and ultimately an organ’s susceptibility to injury. These new insights into the 
molecular mechanisms regulating circadian rhythmicity might help to explain the phenomenon of circadian variation 
in stroke occurrence.
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Introduction
The term “circadian rhythm” stems from the Latin expressions 

“circa” (about, around) and “dies” (day), describing the endogenous 
physiologic rhythmicity with an approximate duration of 24-hours 
that is inherent to all living organisms. It not only dictates the 
endogenous sleep/wake cycle, but also influences behavior and nearly 
every physiological function. This “internal clock” can be influenced by 
external factors such as light [1] or nutrition [2], making it a “diurnal” 
cycle synchronized to 24-hour alternating intervals of light and dark. 
The master clock in humans is known as the Suprachiasmatic Nucleus 
(SCN) located in the anterior hypothalamus, where the organism’s 
circadian rhythm originates. However, it has become recognized 
that almost every cell has a “clock”, regulating molecular and cellular 
functions guided by the same circadian rhythmicity that then affects 
metabolism, and ultimately susceptibility to stress or injury [3]

A circadian rhythm is generated at the molecular level by expression 
patterns of an array of genes, controlled by several transcription 
factors. The products of these genes in turn serve as repressors for the 
transcription factors, completing a negative feedback loop that keeps 
the cycle oscillating in a circadian manner [4]. The specific downstream 
targets of these clock genes have yet to be elucidated, but it seems that 
the target genes that are utilmately modulated are highly tissue specific 
[5]. 

Literature supports the concept of distinct circadian distribution 
patterns for the frequency of cerebrovascular events such as ischemic or 
hemorrhagic stroke [6-8]. While earlier studies focused on exogenous 
factors that influenced stroke frequency such as physical activity, food 
intake, stress or medication [9], researchers have become increasingly 
interested in the role that the internal clock might play in determining 
the onset and frequency of cerebrovascular events, as well as the severity 
of neuronal damage and clinical outcome. Furthermore, it is known 
that hemodynamic and cardiovascular parameters that influence the 
risk of cerebrovascular events, such as blood pressure, heart rate, and 
coagulation, follow circadian variability [10], and are controlled by the 
endogenous clock [11-13].

The first part of this review will focus on the clinical aspects of 
stroke and its striking circadian distribution. In the second part, we will 
review the current literature on how circadian rhythm is generated at 
a molecular level, followed by a discussion on how the molecular clock 
and circadian gene expression might be involved in the aforementioned 
circadian distribution of stroke. Finally, we will discuss the intriguing 
link between gasotransmitters Carbon Monoxide (CO), Nitric Oxide 
(NO), and regulation of the molecular clock.

Part 1: Circadian Rhythm in Stroke
Since the 1970s, there have been numerous reports linking circadian 

rhythm and stroke occurence [14]. Ischemic and hemorrhagic stroke 
can exhibit a bimodal frequency of ictal events [9]. When strokes of all 
types are considered collectively, the ictal event occurs more often in 
the morning and early afternoon hours [15,16]. Circadian periodicity 
is not only seen in the occurence of ictal events, but also fatality due 
to stroke. One study shows fatality to be higher when occuring in the 
morning as opposed to afternoon, even when adjusting for age, gender, 
and severity [17]. 

Ischemic stroke, intracebral hemorrhage, and subarachnoid 
hemorrhage are the three major types of stroke, each with its own 
pathophysiologic mechanisms and set of clinical characteristics. Often, 
these different stroke types have reportedly different circadian patterns 
when looked at separately.
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as a reference variable). Weekend-related changes in diet, alcohol 
consumption and physical activity have been suggested to explain this 
phenomenon [27]. Differences are found when SAH is divided into two 
subgroups: Aneurysmal SAH (aSAH) caused by an aneurysm rupture 
and non-aneurysmal SAH (naSAH). Aneurysmal SAH reportidly occur 
most often during the morning hours whereas no peak occurrence is 
reported in naSAH [28,29]. 

Each type of stroke presents with a uniqe circadian rhythm. This 
is not surprising as each category of stroke not only has a distinct 
clinical presentation, but also has a unique pathophysiology, as well as 
different risk factors. Various exogenous and endogenous factors show 
circadian oscillation, including blood pressure, pro-thromboembolic 
factors, autonomic nervous system regulation, and occurence of atrial 
fibrillation. These are considered to be potential factors in circadian 
rhythm of stroke ictus and each will be discussed below.

Exogenous and endogenous factors in stroke frequency

Seasonal variation: Seasonal variations seem to affect the risk of 
stroke. There is higher frequency of occurrence for embolic ischemic 
stroke, ICH, and SAH during the colder months [30-33]. This same 
seasonal pattern is seen in patients with putaminal and subcortical 
ICH [23]. ICH of undetermined origin shows no significant seasonal 
pattern [33]. 

SAH events peak in February with risk factors including low 
temperature on both the day prior to as well as day of onset as well as 
high barometric pressure on the onset day [34]. SAH events reportedly 
peak in colder months and dip in the warmer months for patients 
aged 59 years or younger. SAH seasonal variations are most significant 
in the morning hours regardless of patient age or season [35]. Why 
this seasonal variation in ictal events occurs is not yet completely 
understood and requires further research on the possible association 
between seasonal variation and stroke. 

Pro-thromboembolic factors and autonomic nervous system 
activity: The pattern of IS events is potentially due to hypercoagulability 
that occurs with greater frequency in the early hours of the day [18]. 
Epinephrine, norepinephrine, and platelet aggregation are increased in 
the morning, approximately 90 minutes after assumption of the upright 
position [36]. Platelet aggregation increases significantly during the 
morning hours, but the increase is not significant when subjects remain 
supine and inactive [37]. This could explain the increased IS risk in the 
morning. Additionally, increased alpha-sympathetic vasoconstriction 
activity in the morning with a significantly higher basal forearm 
vascular resistance and lower blood flow further increases the risk of 
IS [38].

There have been recent reports showing that the circadian rhythm 
of hemostatic factors can have an effect on tissue Plasminogen Activator 
(tPA), a commonly used treatment for IS. Acute ischemic stroke due to 
middle cerebral artery occlusion treated with i.v. tPA has been shown 
to produce better clinical outcomes in patients treated during diurnal 
tPA administration (9 am-9 pm) compared to those treated during 
the nocturnal period (9 pm-9 am) [39]. In addition to pro-thrombotic 
factors and nervous system regulation, BP physiology patterns may be 
involved in causing the differences in stroke frequency. The role of BP 
variation in relation to ictal events will be discussed in the next section. 

Blood pressure: Blood Pressure (BP) has circadian regularity and 
is an accepted risk factor for stroke. Changes in circadian rhythm are 
witnessed in stroke patients. A 2004 study found that normal diurnal 
variation in BP was abolished in a majority of acute stroke patients, 
where BP normally decreases by at least 10% in the evening hours 

Circadian rhythm in ischemic stroke

Ischemic Stroke (IS) events are caused by reduced blood flow to a 
region of the brain due to obstruction of an artery. Of the three major 
stroke classifications, IS is unique in that it is the only type to have 
maximal yearly ictal events during the same time period for all its 
subtypes. 

IS is reported to occur with a maximal peak in the morning 
hours, and a second minor peak in the evening; this circadian pattern 
is independently associated with the occurrence of IS even when 
controlling for hypertension, diabetes, hyperlipidemia, smoking 
habits, previous vascular events, and treatment with anti-platelet 
agents or anticoagulant drugs [18,19]. Even when IS is divided into the 
subgroups of small artery or lacunar stroke, cardioembolic, large artery, 
and cryptogenic, the highest probability of ictus is still in the morning 
hours for each subtype of IS [20-22]. Unlike IS where incidence is 
greatest in the moring, studies of intracerebral hemorrhage show this 
to not hold true for all stroke types.

Circadian rhythm in intracerebral hemorrhage

Intracerebral Hemorrhage (ICH) is defined as an arterial bleed into 
the brain parenchyma. What is interesting about circadian rhythm in 
ICH is that patients with different demographics tend to show different 
circadian patterns of ictal events. 

Unlike IS, ICH has a higher occurrence rate in the late afternoon, 
with rare observation of ictus at night [23]. This time of the day 
distribution pattern remains when only hypertensive ICH patients are 
considered as well as when ICH is subgrouped according to location 
of hemorrhage. However, differences in ictal onset emerge when 
biographics such as age and gender are considered. For example, one 
study found a single morning peak of ICH occurence in men 69 years 
of age or younger. In contrast, men over 70 as well as woman of all ages 
were shown to only have a single evening peak [23]. 

Whether or not one is sleeping during an ICH, it also seems to 
affect outcome. When ICH mortality was compared in patients who 
were asleep versus awake during the ictal event, the sleeping patients 
had a signficantly higher mortality. Not surprisingly, the hemorrhage 
volume in the sleeping group was significantly larger [24].

Clinical studies of ICH show the importance of normal 24-hour 
biological circadian rhythm in regulating physiologic functions such as 
Blood Pressure (BP) and Heart Rate (HR). In the hours prior to death 
due to ICH, the normal circadian oscillation pattern of these parameters 
was absent [25]. BP and HR also aid in predicting the prognosis of ICH 
patients that undergo neurosurgical intervention. When the BP and 
HR circadian rhythms remain normal for 24-hours postoperatively in 
hypertensive ICH, better clinical outcomes are observed [26]. 

ICH presents with a different pattern of ictus than that of the other 
type of hemorrhagic stroke: Subarachnoid hemorrhage. The overall 
peak of SAH events vary depending on the season.

Circadian rhythm in subarachnoid hemorrhage 

Subarachnoid Hemorrhage (SAH) is bleeding into the 
subarachnoid space surrounding the brain due to vessel destruction. 
Unlike IS and ICH, SAH presents with different cerebrovascular event 
hours depending on the temperature. 

SAH occurence is highest in the morning during the colder 
months and highest in the afternoon during the warmer months 
with a significant increase in frequency on Sunday (with Monday 
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[40]. There have also been circadian BP differences among ischemic 
stroke subsets [41]. Lacunar or small artery stroke is a subtype of IS 
that results from occlusion of an artery delivering blood to deep brain 
structures. Patients with lacunar strokes present with a mean decline 
in day-night systolic and diastolic BP of approximately 4 mmHg 
compared to non-lacunar infarction patients, who show no 24-hour 
nocturnal BP decrease [42]. 

Even though it is generally accepted that high BP is a risk factor for 
stroke, further studies are needed to determine whether changes in BP 
occur before and/or after an ictal event. Another widely accepted risk 
factor for stroke that is thought to have involvement in the circadian 
rhythm of ictal events is atrial fibrillation.

Atrial fibrillation: Atrial fibrillation is a cardiac arrhythma 
disorder leading to abnormal impulse conduction to the ventricular 
chambers of the heart. This heart rhythm disorder is accepted as a risk 
factor for stroke, and now there is evidence that some patients who 
present with disordered heart rhythm also show a temporal pattern 
of stroke occurence. One study in 2001 describes a distinct stroke 
frequency in atrial fibrillation patients, with the highest occurrence of 
stroke to be during general daylight hours, and the lowest occurrence 
to be during early morning hours [43]. Patients who report a single 
episode of cardioembolic acute stroke due to atrial fibrillation, show a 
higher incidence spike in the morning, and a second lower peak during 
the late afternoon [44]. A separate study finds that some chronic atrial 
fibrillation patients lose their diurnal variation in hypercoagulability 
along with the loss of diurnal variation in hemostatic markers: 
both coagulability and hemostatic factors abnormally remain in a 
hyperactive state in these patients [45]. In a recent publication, a 
specific relationship between atrial fibrillation and wake-up stroke was 
studied. An independent association between atrial fibrillation and 
wake-up ischemic stroke and transient ischemic stroke was reported, 
where there was a 3-fold increase in detecting a newly diagnosed atrial 
fibrillation in patients with wake-up cerebrovascular occurrences [46].

Part 2: Linking Circadian Patterns of Stroke to the 
Molecular Clock

Literature reports clearly show a wide range of both exogenous 
and endogenous factors to play a role in the circadian rhythm of stroke 
occurrence. More enlightenment into the role of the internal molecular 
clock inherent to all organs and cells could be key to understanding the 
role that these factors play in circadian susceptibility to ictal events. In 
the second part of this review, we will focus on how circadian rhythm 
is generated at the molecular level. This is followed by discussion on 
how circadian gene expression is involved in the circadian distribution 
of stroke, describing a possible mechanism responsible for this 
phenomenon.

The internal molecular clock

Circadian rhythm is generated at the molecular level by expression 
of several clock genes, the expression of which is controlled by 
corresponding transcription factors. Many genes associated with 
circadian rhythmicity have been identified, however, the general 
understanding is that there are eight core members that include: Period 
(Per1, 2 and 3), Cryptochrome (Cry1 and 2), and the transcription 
factors Clock, Arntl (Bmal1) and Npas2. Circadian oscillatory 
expression is controlled via an auto-regulatory feedback loop [4,47]. 
Expression of Per and Cry genes is driven by Bmal1/Clock or Bmal1/
Npas2 heterodimers binding to the corresponding E-box enhancer sites 
within the Per and Cry promotor regions. After translation, Per and 

Cry proteins heterodimerize and translocate into the nucleus, where 
they suppress the transcriptional activity of Clock, Bmal1 and Npas2, 
repressing their own transcription and closing a negative feedback loop 
that shows a circadian rhythmicity of gene expression. Protein level 
peaks for Per and Cry are delayed by approximately 6 hours compared 
to the corresponding mRNA peaks [48]. In addition, the following co-
factors play an important role in the regulation and stabilization of the 
circadian molecular clock: Casein Kinase 1ε (CK1ε) that phosphorylates 
Per, leading to suppression of Clock- and Bmal1-DNA-binding [49] 
and Rev/Erb-α that represses transcription of Bmal1 [50]. A vast array 
of downstream genes is influenced in a circadian manner. Up to 5-10% 
of the entire genome varies with similar rhythmicity. However, this 
fraction of the genome varies in a highly tissue-specific manner [5,51-
54] with little overlap between different organs, providing each tissue 
with an individual set of genes regulated in a circadian fashion.

This internal molecular clock is very accurate, even when external 
cues are missing. This has been shown in experiments with continuous 
darkness/light and forced phase shifts [55,56]. Meanwhile, the system 
is very dynamic in its ability to adjust to external cues in that it can re-
set its own “time” and synchronize to new environmental situations, 
especially in response to light (“phase delay” and “phase advance”) 
[1,57]. This adaptation ability has indeed proven to be very helpful 
in an evolutionary sense so to allow for adjustment to new ecological 
situations and the naturally occurring seasons. However, the internal 
molecular clock’s readiness to react to new external cues poses problems 
in situations of modern life that otherwise antagonize our “natural” 
internal rhythms, such as night shift work, continuous light exposure, 
and jet lag. Disruption of these innate rhythms increase the risk for 
several health problems including cardiac and metabolic diseases that 
ultimately lead to cerebrovascular events such as stroke [58-60].

Central vs. peripheral cellular (organ) clocks

The dogma of the SCN operating as the “master clock” controlling 
circadian rhythm of the whole body has been challenged by the 
discovery of peripheral clocks that exhibit endogenous and autonomous 
circadian rhythm [61-64]. Nearly all organs, except the testes, show a 
high expression of clock genes. An autonomous peripheral organ clock 
exists that is entrained and synchronized by SCN as the “pacemaker” 
dictated by external light and dark cues. Peripheral tissues will 
maintain their circadian gene expression profile ex vivo even without 
being entrained by the SCN [62,63,65]. However, the peripheral clocks 
eventually lose their ability to oscillate in a circadian manner after 
several cycles in vitro. In contrast, the SCN can maintain its periodicity 
for more than 30 days [62]. It remains an interesting and elusive subject 
as to how the SCN acts as the pacemaker and communicates with 
peripheral organs to synchronize their autonomous clocks. This most 
likely happens via circulating hormone levels [61,66], but the processes 
related to this synchronization are still poorly understood. Even in the 
brain, different regions exhibit their own autonomous rhythm that 
is most likely also synchronized by the SCN, but these regions show 
remarkable time shift capabilities in their clock gene expression profile 
[67-69].

Does stroke perturb the circadian clock?

On the one hand, sleep-related disorders such as Obstructive Sleep 
Apnea (OSA) are an independent stroke risk factor and have a significant 
influence on clinical outcome [70]. On the other hand, stroke itself 
can lead to disturbance in sleep-wake patterns [71], the treatment of 
which poses an immense challenge. Perturbation of sleep-wake cycles 
in stroke patients could easily be attributed to external factors such as 
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light and noise exposure in the Intensive Care Unit (ICU) or hypnotic 
and sedative drug treatment [72]. However, experimental evidence 
suggests that the injurious event itself causes the circadian clock lose its 
original rhythm [73,74], altering the physiological circadian expression 
pattern in different brain regions. As a consequence, future clinical 
treatment strategies for stroke related sleeping disorders might have to 
be focused on re-setting the clock so as to improve sleep-wake behavior 
in these patients and improve clinical outcome. Additional evidence 
for injurious events to the brain that disrupt the molecular clock 
comes from clinical data showing that stroke patients lose their normal 
variation in BP (night-time dipping) [40], underlining the fact that the 
molecular clock is indeed “losing its beat” after neuronal injury.

Clock gene expression and cardiovascular dysfunction

The importance of clock genes for an organism’s homeostasis is 
underscored by the fact that mice deficient in different clock genes 
present with a vast array of pathological phenotypes. Mice deficient 
in Bmal1 suffer from disturbed sleeping behavior, liver and kidney 
dysfunction [75], metabolic impairment [76], musculosceletal weakness 
[77], arthritis [78] and eventually premature death [79]. Furthermore, 
Bmal1 and also Clock deficient mice suffer from cardiomyopathy 
[80], lack of a normal diurnal variation in BP and HR, endothelial 
dysfunction, and pathological vascular remodeling [11]. Vascular 
endothelial dysfuntion has also been confirmed for Per2 deficient 
mice [81]. Per2 expression has been shown to follow a circadian 
pattern in the heart [82]. Moreover, Per2 is upregulated following 
cardiac ischemic injury, exogenous induction of Per2 exerts significant 
protection against cardiac ischemic injury, and Per2 deficient mice 
show aggravated cardiac damage [82].

Experimental and clinical studies have shown that the function 
of the coagulation system undergoes dramatic changes throughout 
the course of a day [9,10]. This adds to the variable susceptibility to 
thrombotic or hemorrhagic events during the circadian cycle. In 
addition, physiological circadian BP changes are also under the 
control of clock gene expression. Mice with SCN ablation or loss in 

different clock genes lose their circadian BP variation [12], leading to 
pathological phenotypes that can trigger cerebrovascular injury.

Neuronal clock gene expression and neuronal injury

The aforementioned reports lead us to conclude that: 1.) disturbance 
of normal clock gene expression increases susceptibility to stroke and 
2.) Different times of the day dictate a high or low susceptibility to 
cerebrovascular events depending on the actual expression level of the 
clock genes and that this exists even in organisms with normal clock 
gene expression patterns.

The brain might exhibit varying degrees of susceptibility to 
stroke depending on clock gene rhythmicity within the neuronal 
cells themselves. Since circadian rhythm gene expression may 
be differentially regulated in different brain regions [68,69], the 
susceptibility of the brain to injury might even vary within different 
regions of the brain. Some experimental data supports the idea that 
neuronal expression of circadian rhythm genes directly influences 
susceptibility to injury. One study reports that neuronal apoptosis in the 
hippocampus after ischemic injury is dependent on the time of the day 
and the quantity of Per expressed [73]. Additionally, ischemic neuronal 
injury at time points where Per1 expression is low lead to increased 
neuronal apoptosis. Knock-out studies with mice lacking Per1 revealed 
that these mice are more susceptible to neuronal cell death following 
ischemic injury [83]. In traumatic brain injury, Per2 expression in the 
hippocampus and the SCN is upregulated as early as 4-8 hours after 
injury [74]. The expression pattern of circadian rhythm genes and their 
potential protective role following other types of neuronal injury such 
as intracerebral or subarachnoid hemorrhage has not been explored. 

Clock genes and gasotransmitters

Npas2, as Bmal1, can heterodimerize with Clock to control 
expression of Per2 and other clock genes. The DNA-binding activity of 
this transcription factor is modulated by Carbon Monoxide (CO) [84]. 
More recently, Clock and Rev-erbα activity has been associated with 
heme-binding properties that enable modulation by gasotransmitters 

Figure 1: Schematic illustration depicting the influence of circadian rhythm on stroke susceptibility.
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including CO and Nitric Oxide (NO) [85,86]. The binding of these gases 
to the heme moiety in Rev/Erb-α likely influences the transcriptional 
activity of Clock and the suppressive function of Rev/Erb-α on Bmal1 
transcription. Indeed a recent report by our laboratory shows that 
CO requires Rev/Erb-α to drive cellular repair [87]. This adds to the 
complexity of clock gene control since regulation through volatile 
gasotransmitters like CO and NO are likely to take place very rapidly, 
regardless of cellular borders. Exogenous application of these gaseous 
molecules might emerge as a useful tool for re-setting a perturbed 
internal clock and eventually improving clinical outcome after both 
neuronal and peripheral organ injury.

Conclusions
The circadian frequency pattern of stroke occurrence has long been 

acknowledged. There is strong evidence that in addition to exogenous 
factors, the circadian oscillation in cardiovascular function, coagulation 
and cellular metabolism dictates this variability. Central to the increased 
susceptibility is the molecular clock and when in the circadian cycle the 
insult or stress occurs. Figure 1 depicts the prospective link between 
the molecular clock and neuronal injury in stroke occurrence. With an 
understanding of how the rhythm of the clock influences susceptibility 
to pathophysiology, potential therapeutic approaches can then be 
designed and implemented.
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