

Research Article Open Access

# Chicken Production Systems, Performance and Associated Constraints in North Gondar Zone, Ethiopia

# Addis Getu and Malede Birhan\*

University of Gondar, Department of Animal Production and Extension, Faculty of Veterinary Medicine, Gondar, Ethiopia

### **Abstract**

Survey was conducted in three districts (Quara, Alefa and Tach Armachiho) of Amhara region northwestern Ethiopia. Semi structured questionnaire, participatory rural appraisal and ranking trials were used. Extensive production systems is the dominant management practices of chicken with small feed supplementation. Three peasant associations from each districts and a total of 180 households were selected using multistage simple random sampling technique based on chicken potential. Farmers were interviewed using semi-structured questionnaire and additional data was obtained from key-informants through group discussion. This investigation revealed that average flock size/ household was 16.11 for Quara, 16.33 for Alefa and 16.73 chickens for Tach Armachiho district. About 90% both in Quara, and Tach Armachiho and about 2.4% in Alefa districts of chicken owners are constructed separate shelter for chickens. The average eggs laid/clutch/hens is 16.88, 14.23and 11.9 eggs for Quara, Alefa and Tach Armachiho districts, respectively. Annual egg production of local hens is 60.20, 55.87 and 36.94 eggs/hen for Quara, Alefa and Tach Armachiho districts, respectively. Seasonal outbreaks of diseases and predation were the two major causes for loss of chickens. Women are responsible in managing chickens in all the study sites. Therefore, emphasis should be given in availing production technologies including breeding systems, organizing input supply system for chicks, feed, vaccines and veterinary drugs for chicken and eggs. The influential bodies should consider the importance of indigenous genetic resources and struggle to develop appropriate technologies at conserving the unique genetic resources and improving village flock production and productivity.

**Keywords:** Chicken production; Constraints; Performances

### Introduction

In Ethiopia, the agricultural sector is a corner stone system known to possess desirable characteristics such of the economic and social life of the people [1]. At national level in Ethiopia, 99% of the total, 56.5 million, estimated chickens are contributed by village management of village poultry production in rift valley of poultry production while only 1% is from intensive exotic breed maintained under intensive management system [1]. Poultry is the largest livestock species worldwide [2], accounting for more than 30% of all animal protein consumption [3]. Chickens largely dominate flock composition and make up about 98% of the total poultry about 98% of the total poultry (chickens, ducks and turkeys) population kept in Africa.

The sector as thermo tolerant, resistant to some disease, good egg employs 80-85 percent of the population and contributes and meat flavor, hard eggshells and high dressing 40 percent to the total GDP [4]. Therefore, almost all rural and many peri-urban families keep small flock scavenging local chickens [2]. Imagining about 80% of the chicken populations in Africa is reared in free scavenging production systems [5,6]. In African countries, the rural chicken population accounts more than 60% of the total national chicken population [4]. However, in Ethiopia chicken populations were estimated about 49.3 millions of which 97.3%, 2.32 % and 0.38% were indigenous, exotics and hybrid breeds, respectively [7].

Still these large population indigenous chickens are found in traditional production systems. But, they are well adapted to the tropics, resistant to poor management, feed shortages, tolerate to diseases and provide better test of meat and eggs than exotic chickens [8]. Furthermore, short generation interval, high rate of productivity, easy to transport in different areas and easily consumed by the rural poor are the major opportunities of chickens comparing with other farm animals [4].

So comprehensive assessment of production system in the remote districts of northern Gondar zone in general, identification of production systems and associated constraints in these particular areas was unquestionable; therefore, the objective of this study were;

- To evaluate the performance of chickens and production system in the study area and
- To identify the most important problems and constraints associated with chicken production system in north Gondar zone

# **Materials and Methods**

# Description of the study area

The study was conducted in randomly selected three districts of north Gondar zone (Quara, Alefa and Tach Armachiho) of Ethiopia. The altitude of the zone is ranged from 528-4620 meter above sea label (masl) and rainfall of 880-1772 mm with the temperature of 44.5°C to -10°C. Quara district is located western part of north Gondar Zone between 11°47' and12°21 and latitude and 35°16' and 35°47'E longitude. It is 1123 km far from Addis Ababa and 324 km from Gondar town and elevation ranging 528-654 meter above sea label. The annual temperature ranges 25-44°C with mean annual rainfall of 600-1000 mm [8]. The same source indicated that Alefa district is located at 162 km in southwest of Gondar town and 909 km from Addis Ababa with the temperature of 25 - 30°C and annual rainfall of 900-1400 mm. Armachiho district is also found 814 km northwest of Addis Ababa and 65 km North West of Gonder town with the altitude of 600-2000 masl with the temperature of 25-42°C and with annual rainfall of 800-1800 mm [5].

\*Corresponding author: Malede Birhan, Department of Animal Production and Extension, Faculty of Veterinary Medicine, University of Gondar, P.O.Box: 196, Gondar, Ethiopia, E-mail: birhan1975@gmail.com

Received July 25, 2014; Accepted Aigust 20, 2014; Published Aigust 25, 2014

**Citation:** Getu A, Birhan M (2014) Chicken Production Systems, Performance and Associated Constraints in North Gondar Zone, Ethiopia. J Fisheries Livest Prod 2: 115. doi: 10.4172/2332-2608.1000115

Copyright: © 2014 Getu A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

### Data collection methods

In addition to semi-structured questionnaires participatory rural appraisal (PRA), focus group discussion and field observation were employed to dig up the required information. All 180 household chickens owner respondents, 60 per district were considered for semi-structured questionnaires.

From the present investigation both qualitative and quantitative data were considered. Qualitative data included household socioeconomic characteristics, husbandry practices, and flock structure and production constraints of the chickens. Whereas, quantitative data included flock size, family size, performance of chickens and land size.

## Questionnaires

Performance data like productive and reproductive ability of chickens' husbandry practices, flock size, flock structure, family size, household socio-economic characteristics and land size of respondents were documented through semi-structured questionnaires adopted from Hunduma [8].

#### PRA tools

- **Group discussion:** One focus group discussion members (12) per ecotype were inhaled to generate information other than the individual interviews. Members of the focused groups were communally known to have a good understanding in animal production, people believed to be knowledgeable about past and present social and economic status of the area, community leaders and story tellers.
- Ranking trial: Ranking trial was used to study major constraints
  of farmers. Participants were asked to rank their first, second,
  third fourth and fifth major constraints. The respondents were
  mentioned so much reasons. But, only five mentioned reason
  were taken based on their current production mode and future
  improvements.
- Data management and statistical technique: Data was managed both in hard and softcopies. All collected data were entered and managed using Microsoft Excel computer programme. More over data were analyzed by SAS, 2002 version 9. Indexes were used to calculate for data collected from rankings with the formula: Index=sum of (5 for rank 1+4 for rank 2+3 for rank 3+2 for rank 4+1 for rank 5) given for an individual reason divided by the sum of (5 for rank 1+4 for rank 2+3 for rank 3+2 for rank 4+1 for rank 5) [8].

#### Results

### Socio-Economic characteristics of the area

The majority of the respondents in this study area were females accounted about 57.8%. These larger female respondents might be absent of traditional restrictions observed women approaching to outsiders. However, smaller result was reported by Mekonnen [9] who showed that only 66.7% of the respondents were married. From interviewed respondents most information was generated from females which indicated that mainly women are culturally responsible for rearing of chicken. According to Gueye [3] in sub Saharan Africa from the total family size about 80% of the chicken flocks were owned and largely controlled by women. Similar result was also reported by many researchers such as Mekonnen, Halima [9,10]. Moreover, about 73.3% of the average interviewed farmers were illiterate while 16.7% can read and write. About 6.7% and 3.3% were literate respondents who had gone through primary first cycle (1-4) and primary second cycle (5-8), respectively. Finally illiterate those who read and write educational status of the interviewed farmers in the recent study were slightly similar to southern Ethiopia (67.8% and 18.9%) as reported by Mekonnen [9]. Thus, lower educational background obtained in the study area might be lack of security, access and location to the main town.

Average family size of Quara, Alefa and Tach Armachiho districts were 5.77  $\pm$  0.57, 6.10  $\pm$  0.44 and 6.73  $\pm$  0.48 persons, respectively with overall mean family size of 6.20  $\pm$  0.28 (Table 1). These results were almost smaller than southern Ethiopia (6.95 persons) reported by Mekonnen [9] and higher than the national average of 5.2 persons [11]. Moreover, land holding characteristics of the respondents are presented in Table 1. Total land holding size/household was showed as a significant difference among the three districts. Such as recorded average land holding/household was highest 5.20  $\pm$  0.90 ha from Quara and lowest 1.7 $\pm$  0.25 ha from Alefa district. The result was also significantly higher than 1.01, 0.75 and 1.2 ha land holding/hh at national, Amhara regional state and north Gondar zone. Further recent result showed the average size 1.28 and 1.23 ha/hh was reported from northwest Amhara by Halima and Fisseha [10,12] respectively.

# Flock Sizes and Structures

The dominant flock structures of chicken in the study area were chicks followed by hens. Overall average flock size and structure of chickens kept per household were 9.07  $\pm$  0.59, 2.79  $\pm$  0.26, 2.47  $\pm$  0.26, 1.02  $\pm$  0.15 and 1.11  $\pm$  0.11 for chicks, hens, pullets, cockerels and cocks, respectively with a total flock size of 16.43  $\pm$  0.92. This result was in lined with Gueye [3] who reported that the flock sizes generally ranged from 5

|                | Study area               |                         |                |          |               |
|----------------|--------------------------|-------------------------|----------------|----------|---------------|
| Variables      | Quara                    | Alefa                   | TacheArmachiho | P-value. | Overall- mean |
| Family size/hh | 5.77 ± 0.57              | 6.10 ± 0.44             | 6.73 ± 0.48    | 0.3816   | 6.20 ± 0.28   |
| Land size/hh   | 5.20 ± 0.90 <sup>a</sup> | 1.7 ± 0.25 <sup>b</sup> | 3.76 ± 0.71ab  | 0.0019   | 3.55 ± 0.42   |

The same row with different superscripts are significantly different (P<0.01)

Table 1: Average land and family size/hh (Mean ± SE) in the study area (n=90).

| Chicken Category | Quara        | Alefa        | Tach Armachiho | P – value | Overall means |
|------------------|--------------|--------------|----------------|-----------|---------------|
| Chicks           | 8.40 ± 1.20  | 8.83 ± 1.00  | 9.97 ± 0.86    | 0.5627    | 9.07 ± 0.59   |
| Pullets          | 2.93 ± 0.42  | 2.83 ± 0.48  | 1.67 ± 0.40    | 0.0912    | 2.47 ± 0.26   |
| Cockerels        | 1.03 ± 0.26  | 1.13 ± 0.27  | 0.90 ± 0.25    | 0.8208    | 1.02 ± 0.15   |
| Hens             | 2.63 ± 0.31  | 2.60 ± 0.27  | 3.13 ± 0.41    | 0.4417    | 2.79 ± 0.19   |
| Cocks            | 1.33 ± 0.20  | 0.93 ± 0.14  | 1.07 ± 0.20    | 0.1825    | 1.11 ± 0.11   |
| Over all         | 16.11 ± 0.11 | 16.33 ± 1.44 | 16.73 ± 1.49   | 0.9495    | 16.43 ± 0.92  |

Table 2: Flock size and structure of indigenous chickens in North Gondar zone.

to 20 fowls per African village households. However, lower results were also conducted by Mekonnen and Assefa [9,12] from Awassa Zuria and Dale district with mean flock size of 8.8 and 9.2 chickens/ household, respectively. Furthermore, similar report was carried out on the average flock size per household of 16 in the central parts of Ethiopia and in the Kwale district of the south coast of Kenya [13]. Furthermore, two fold lower reports from current findings were carried out on the average flock size per household of 7.1 [14]. But, from the current investigation the flock size per household was not significant different among ecotypes (Table 2). The same number of flock sizes observed in different districts might be adaptation ability of the dominant ecotypes from their own production environment. Finally, the respondents noted that flock size is not always the same mainly due to chicken used as source of immediate farmers' expense, occurrence of diseases and presence of predators. The lower proportion of the cockerels and cock within the indigenous chicken population were observed. Since cockerels and cocks are used for immediate expense and sharing of breeding males for that small number of hens in the village.

# **Chicken production systems**

The major feed resources, feeding practices and frequency of giving to eat in the study area indicated by the respondents showed (Table 3). All respondents kept only pure indigenous chickens and managed extensively under traditional production systems. Almost all respondents practiced supplementary feeding of local chickens' spring on the ground. Whereas, confined management of chickens with commercial feeding is not known at all districts. Similarly, many researchers such as Mekonnen, Halima, Moreda, Fisseha [9-12] about 95%, 98.1%, 99.28% and 96.3% of the poultry producers in Awassa Zuria, Dale Woreda, Northwest and central Ethiopia were offered supplementary feed to their chickens, respectively. Additionally, related result showed that there was no purposeful feeding of rural chickens in Ethiopia and the scavenging feed resources were almost the only source

| Parameters                     | Percentage of the respondents in the districts/ (%) |        |                   |         |  |
|--------------------------------|-----------------------------------------------------|--------|-------------------|---------|--|
|                                | Quara                                               | Alefa  | Tach<br>Armachiho | Overall |  |
| Frequency of feeding (%)       |                                                     |        |                   |         |  |
| Morning, afternoon and evening | 26.67                                               | 13.33  | 43.33             | 27.78   |  |
| Any time during the day        | 6.67                                                | 6.67   | NA                | 4.44    |  |
| Morning and afternoon          | NA                                                  | NA     | NA                | NA      |  |
| Morning and evening            | 26.67                                               | 23.33  | 13.33             | 18.89   |  |
| Afternoon only                 | NA                                                  | 10. 00 | 3.33              | 4.44    |  |
| Morning only                   | 30.00                                               | 40.00  | 33.00             | 34.44   |  |
| Evening only                   | NA                                                  | NA     | NA                | NA      |  |
| No feeding                     | 10.00                                               | 6.67   | 6.67              | 7.78    |  |
| Over all                       | 100                                                 | 100    | 100               | 100     |  |
| Feeding practice (%)           |                                                     |        |                   |         |  |
| Throw on the ground            | 93.33(28)                                           | 98.00  | 100               | 96.67   |  |
| On feeding trough              | 6.67 (2)                                            | 2.00   | NA                | 3.33    |  |
| Source of the feed (%)         |                                                     |        |                   |         |  |
| From the house                 | 100 (30)                                            | 100    | 100               | 100     |  |
| Purchased                      | NA                                                  | NA     | NA                | NA      |  |
| Purchased and from the house   | NA                                                  | NA     | NA                | NA      |  |
| Way of supplementation (%)     |                                                     |        |                   |         |  |
| Separate to different classes  | NA                                                  | NA     | NA                | NA      |  |
| Together for the whole group   | 100                                                 | 100    | 100               | 100     |  |

**Table 3:** Feed resources, feeding practices and feeding frequency of indigenous chicken.

of feed [6]. Farmers believe that chickens provided with supplementary feed hens lay more eggs and chicks grow faster. Nevertheless, farmers had no cleared idea in terms of the quality and quantity of supplementary feeds. The major source of chicken feed was obtained from their house and cereal grains of maize (*Julla*) and sorghum (*Rifa*) were the most important supplementary feeds. Similar research result was found from Gomma woreda of cereal grains were important supplementary feeds [15].

# Water resources and watering of chickens

Water plays an important role for feed digestion and metabolic activity of chickens. Almost all of the respondents in the study district provide water ad libitum for their chickens. In Alefa 19.8% of the respondents provide water to their chickens only during the dry season and the remaining (79.2%) offered throughout the year. The major sources of provided water in Alefa district is obtained from river (56.67%), spring (26.67%), locally constructed underground water (3.33%) and hand operated pipe water (13.33%). However, all respondents together with equal proportion from Quara and Tach Armachiho district provided water for their chicken both in dry and wet season. In Quara the water sources are river (26.67%), spring (16.67%), locally constructed underground water (10%) and hand operated pipe (46.67%). Whereas, in Tach Armachiho district river (33.33%), springs (20%) and hand operated pipe water (46.67%) were the major sources of households, supplied water for their chickens. About 98%, 96% and 58% of the respondents haven't standard watering troughs in Quara, Tach Armachiho and Alefa district, respectively. In Alefa, clay material (47.3%), wooden trough (32.7%) and troughs made of plastic (18.2%) were the most widely used watering troughs, whereas in Quara clay material (77.3%) and wooden trough (22.7%) and in Tach Armachiho district clay materials (92.5%) and wooden trough (7.5%) were used. Concerning to the frequency of cleaning watering trough in Alefa district was about 23.33% and (76.67%) of chicken owners were cleaned every day and never cleaned, respectively. In Quara and Tach Armachiho districts the respondents washed the containers randomly during changing of hot water twice per day.

# **Chicken housing practices**

As usual poultry house protects chickens from predators, theft, rough weather (rain, sun and wind and temperatures) and provide shelter for egg layers and broody hens. In Alefa district about 97.6% of the respondents kept their chicken at night sheltering places within the family house and placed on the floor covered by ventilated bamboo made materials. The main reasons for not constructing separate chicken houses in Alefa district was small flock size, lack of awareness and risk of predators. However, almost all equal proportion of respondents in Quara and Tach Armachiho districts more than 90% of the respondents were constructed separate perches. The reasons for constructing of chicken houses in Quara and Tach Armachiho districts were presence of predators specially snicks and suffocations. While, only 3% and 2% of the respondents were allowed their chickens to roost enclosed baskets hanging in the trees and in the family house whereas 5% and 2% of chickens were roost on the trees and enclosed baskets hanging in the trees from Quara districts, respectively. Smaller research result was reported from north western part of Ethiopia [9] and from Fogera [16] who revealed that 50.77% and 59.7% of farmers kept their chicken outside the house, respectively whereas Mekonnen [9] reported that there is no specific separate poultry house in Dale Wereda.

# Marketing systems

During data collection the communities were sold live chickens

and eggs from the ordinary day is presented in Table 4. Respondents confirmed that chickens prices are not always constant. Therefore, in the usual market chicken owners were obtained better prices from matured chickens 82.83  $\pm$  2.14 and 67.87  $\pm$  2.24 from Quara 77.00  $\pm$  2.76 and  $52.50 \pm 1.74$  from Tach Armachiho than  $53.27 \pm 1.74$  and  $40.33 \pm 1.42$ from Alefa districts with the average prices of  $71.03 \pm 2.14$  (n=180) and  $53.56 \pm 2.24$  (n=90) birr per matured cocks and hens, respectively. The prices obtained in this finding were significantly higher as compared to Hunduma [8] who reported  $21.74 \pm 0.54$  (78) and  $13.95 \pm 0.43$  (78) as well as Assefa [13] who reported that the price of matured cocks and hens were 21.5 (30) and 13.4 (30) birr, respectively. This finding is still higher than that of Solomon [17] who reported 27.24 and 15.51 birr for matured male and female chickens, respectively in the study made around Awassa Zuria. Market and road accessibility in particular, phenotypic nature of an animals, seasons and holydays in general play important role for the variations of chicken price in the study area. Whereas, average price per unit egg was  $1.70 \pm 0.05$  (n=180) birr. Due to lack of marketing place and access to main road in Alefa as like as live weight of chicken the price of egg was lower than the two districts. Smaller result was also reported by Mekonnen [9] with the average price of 0.57 birr (n=156) and [13] 0.46 birr per egg (n=30) around southern Ethiopia and Debrezait Zuria, respectively.

# **Major Constraints of Chicken Production**

Major constraints of chicken production are presented in Table 5. Among the reported constraints of chicken production prioritized by the respondents in the study area were disease, predators, market problem, lack of water and extension together with veterinary services. Most respondents were frequently mentioned diseases as the first ranked chicken production constraint in all districts whereas predators like snicks were the third problems in Tach Armachiho and Quara district. Market facilities including access to main road were the bottleneck of chicken production in Alefa where as poor veterinary and lack of extension services were identified as a common limitation in all districts. Constraints were not different from those reported by others in Ethiopia such as Solomon [18] who reported that the main constraint of traditional chicken production system was disease. This result is in lined with Abeba [19] who reported that the bio-security of the backyard poultry production system is very poor and risky, since scavenging birds live together with people and other species of livestock.

#### **Chicken Diseases and Control Measures**

In the study area the respondent believed that all chicken diseases were considered as Newcastle disease (NCD) and is defined as a contagious bird disease influencing several domestic and wild avian species; it is contagious to humans. In 1926, it was initially found in Indonesia. It was the most prevalent and economically important disease that destroys village chicken population. These observations could be lack of attention and effect of poor extension and veterinary services. Hasen H [10] and Kibret B [18] also reported that the major cause of death in local chicken is seasonal outbreak of NCD. Even if not mentioned by respondents based on clinical sign and veterinary expert discussions other disease like coccidioses and fowl pox were other existed diseases. About 36.67% and 33.33% of the respondents from Quara revealed that the main sources of chicken disease were incoming and own flocks, respectively. Whereas, 26.67% and 46.67% from Alefa, 66.67% and 30% from Tach Armachiho district in the same order incoming and own flocks were the main sources of disease.

The prevalence of NCD and chicken mortality are higher during the dry and early rainy season especially from March to June and NCD is chronically affected near to lay and brooding hens than the other flock structures. Similar findings were also reported by Halima and Fisseha [10,12] that the major cause of death in local chicken in northwest Amhara and in Ethiopia, respectively were seasonal outbreak of diseases, specifically NCD occurring from April to June. Due to lack of veterinary services about 53.33% in Alefa, 66.67% in Quara and 73.33% in Tach Armachiho district the chicken owners have traditionally experienced to treat their sick chickens. Provision of Lemon, garden cress, Genger and Onion to sick chicken was the widely used traditional treatment in all districts. Furtherly, in Alefa some plant materials (sensel) and all districts bleeding around the wing to remove infected blood and punching swell around the neck to remove collected gas were other practices. Poor coverage of veterinary services in all districts could negatively impact the development of poultry production.

# Current performances of the three ecotypes

Average productive and reproductive performance of newly identified chickens ecotypes were characterized under traditional production systems conducting through semi structured questionnaire. About 50%, 18.9% and 31.1% of evaluated replacement stocks were

| Chicken Category | Study sites               |                           |                              |                |                             |  |
|------------------|---------------------------|---------------------------|------------------------------|----------------|-----------------------------|--|
|                  | Quara                     | Alefa                     | Tach Armachiho<br>(LSM ± SE) | P-value<br>95% | Overall means<br>(LSM ± SE) |  |
|                  | (LSM ± SE) (LSM ± S       | (LSM ± SE)                |                              |                |                             |  |
| Cock             | 82.83 ± 2.14 <sup>a</sup> | 53.27 ± 0.74 <sup>b</sup> | 77.00 ± 2.76 <sup>a</sup>    | 0.0012         | 71.03 ± 2.14                |  |
| len              | 67.87 ± 2.24 <sup>a</sup> | 40.33 ± 1.42°             | 52.50 ± 1.74 <sup>b</sup>    | 0.0011         | 53.56 ± 2.24                |  |
| Cockerel         | 41.90 ± 2.59 <sup>a</sup> | 23.78 ± 0.93 <sup>b</sup> | 38.83 ± 2.03 <sup>a</sup>    | 0.0013         | 34.90 ± 2.59                |  |
| Pullet           | 33.36 ± 2.01 <sup>a</sup> | 17.36 ± 0.85°             | 25.46 ± 1.32 <sup>b</sup>    | 0.0015         | 25.40 ± 2.01                |  |
| Jnit egg         | 1.97 ± 0.07 <sup>a</sup>  | 1.12 ± b0.04 <sup>b</sup> | 2.02 ± a0.06 <sup>a</sup>    | 0.0016         | 1.70 ± 0.05                 |  |

a,b,c means in the same row with different superscripts are significantly different (P<0.01), SE=Standard Errors

Table 4: Mean prices birr of live chickens and eggs in ordinary market days (Lsm ± SE).

| Major Constraints | Quara   | Alefa   | Tach Armachiho | Weighted value |
|-------------------|---------|---------|----------------|----------------|
| Extension service | 0.27(2) | 0.26(2) | 0.18(4)        | 0.22(3)        |
| Water problem     | 0.14(4) | 0.06(5) | 0.23(2)        | 0.21(4)        |
| Predators         | 0.26(3) | 0.16(4) | 0.22(3)        | 0.23(2)        |
| Disease           | 0.28(1) | 0.28(1) | 0.27(1)        | 0.25(1)        |
| Market            | 0.05(5) | 0.24(3) | 0.10(5)        | 0.09(5)        |

Ranks of constraints within a column bearing different numbers are different from each other. The importance of constraints was rated based attributed to productions by individual respondents; most important=1, least important=5

 Table 5: Rating of major constraints of chicken production in the study area.

obtained in the form of purchased, gift and hatched eggs, respectively. According to the respondents' point of view good performance of chicken could be attributed to non-genetic factors such as supplementary feed and care of farmers to their chickens. The present finding discovered that mean age at first female sexual maturity was  $4.70\pm0.27,\,5.50\pm0.17$  and  $6.08\pm0.20$  months with average mean age of  $5.43\pm0.14$  months and as well as first male sexual maturity was  $4.30\pm0.27,\,4.85\pm0.14$  and  $5.13\pm0.20$  with average mean age of  $4.76\pm0.13$  months in Necked neck, Gasgie and Gugut chickens, respectively. Average productive and reproductive performances of chicken ecotypes and their significant difference were estimated under existing farmers' management condition (Table 5).

In this result average age at first female sexual maturity was much earlier than 6.8 months reported by Tadelle [13], and later than 5 months reported by Halima [9]. The productive performance of the ecotypes obtained from the present study was larger in 3.97  $\pm$  0.19 clutches/hen/ year in Gasgie but smaller in  $55.87 \pm 2.67$  eggs/hen/year whereas smaller in 3.52  $\pm$  0.13 clutches/hen/year in Necked neck but larger in 60.20  $\pm$ 4.09.eggs /hen/year. Mean annual egg production of the indigenous chickens of necked neck and Gasgie were higher than those reported (55.2 eggs/year from southern Ethiopia [8], (36-42 eggs/year from Ambo [20]. 32 eggs/year from Assela [21] and 36 eggs/year from Fogera [22]. However, higher performance record was reported from Kibret and Rahman [18,23] than Gugut ecotype of  $36.94 \pm 2.05$  eggs/hen/year. This indicated that the better performance of the two ecotypes and existence of variability in egg production could be an indication of the potential for genetic improvement through selection followed by cross breeding with selected indigenous superior chickens [24].

# **Conclusions**

Chicken production system in the study area was mixed crop-livestock production system using through traditional management of indigenous chickens. The presences of various predators and diseases prevalence were the two major economic important of chicken production constraints. Chickens prices are not always constant which associated with whole days and the fasting situations of the people and festivity of the society. The usual market chicken owners were obtained better prices from matured chickens and from Quara and Tach Armachiho than Alefa districts. The study of performance analysis showed that Nacked neck and Gasgie ecotypes were found better in both productivity and reproductive performances than Gugut ecotypes.

## Recommendations

Farmers in the study area were fully involved in traditional management of indigenous chickens. However, the feasibility of intensive managements on performances of indigenous chickens needs to be assessed. Further intensive and monitoring studies to be proceed on type and coverage of chicken diseases.

## Acknowledgements

The first author would like to thank the Germen international cororation (GIZ) for granting the research budget, Bahir-Dar University allowing access to all facilities, Bahir-Dar University for granting MSc study and local extension workers in the study districts for their help during the survey work. Farmers who took part in the interview and group discussion are gratefully acknowledged.

### References

- Tadesse S, Ashenafi H, Aschalew Z (2005) Sero-prevalence study of Newcastle disease in local chickens in central Ethiopia. International Journal of Applied Research. Vet. Med. 3: 25–29.
- Riise JC, Permin A, McAinsh CV, Frederiksen L (2004) Keeping village poultry. A technical manual for small-scale poultry production. Copenhagen, Denmark.

- Gueye EF (1998) Poultry plays an important role in Africa village life. World Poultry. 14: 14-17.
- Sonaiya EB (1997) African network on rural Poultry development: Progress report. November1989 to June 1995. Proceeding. Afr. Netw. Rural Poult. Dev. workshop, Addis Ababa, Ethiopia.
- CSA 2011 Agricultural sample survey 2010/11, 2: statistical bulletin 505. Report on livestock and livestock characteristics (prevent peasant holdings), Addis Ababa, February 2011.21.
- Dessie T, Ogle B (2000) Nutritional Status of Village Poultry in the Central Highlands of Ethiopia as Assessed by Analyses of Crop Contents. Department of Animal Nutrition and Management, Debre Zeit Agriculture Research Centre, Debre Zeit, Ethiopia, J.Agric. Sci. 17: 47-56.
- FAO (2011) Draft guidelines on phenotypic characterization of Animal genetic Resource. on Genetic Resources for Food and Agriculture Rome.
- Hunduma D, Regassa C, Fufa D, Endale B, Samson L (2010) Major Constraints and Health Management of Village Poultry Production in Rift Valley of Oromia, Ethiopia. American-Eurasian J. Agric. & Environ. Sci., 9: 529-533.
- Mekonnen G, Egziabher (2007) Characterization of smallholder poultry production and Thesis, Awassa College of Agriculture, Hawassa University.
- Halima HM (2007) Phonotypic and genetic characterization of indigenous chicken populations in Northwest Ethiopia.
- Moreda E, Hareppal S, Johansson S, Sisaye T, Sahile Z (2013) Characteristics
  of Indigenous Chicken Production System in South West and South Part of
  Ethiopia. British Journal of Poultry Sciences 2: 25-32.
- Fisseha M, Abera M, Tadelle D (2010) Assessment of village chicken production system and evaluation of the productive and reproductive performance local chicken ecotype in Bure district, North West Ethiopia. African Journal of Agricultural Research Vol. 5: 1739-1748.
- Assefa T (2007) Poultry management practices and on farm performance evaluation of Rhode Island Red, Fayomi and Local chicken in Umbulo Wachu water shade in Sidamo zone. Hawassa University, Hawassa, Ethiopia.
- Tadelle D, Million T, Alemu Y, Peters K (2003) Village chicken production systems in Ethiopia: Use patterns and performance valuation and chicken products and socio-economic functions of chicken.
- Halima HM, Neser F, van Marle-Koster E, deKock A (2007) Phenotypic variation of native chicken populations in northwest Ethiopia. Trop. Anim. Health Prod, 39:507–513.
- Meseret M (2010) Characterization of Village Chicken Production and Marketing System in Gomma Wereda, Jimma Zone, Ethiopia.
- Solomon D (2007) Suitability of hay-box brooding technology to rural household poultry production system. Jimma University College of Agriculture and Veterinary Medicine, Jimma, Ethiopia.
- 18. Kibret B (2008) In situ characterization of local chicken eco-type for functional traits and production system in Fogera district, Amahara regional state.
- Abera F (2000) Base line data on chicken population, productivity, husbandry, feeding and constraints in four peasant associations in Ambo Wereda. Department of Animal Sciences, Ambo College of Agriculture, Ambo, Ethiopia.
- Zohair GAM, Al-Maktari GA, Amer MM (2012) A Comparative Effect of Mash and Pellet Feed on Broiler Performance and Ascites at High Altitude. Global Veterinaria 9: 154-159.
- Hunduma D, Regassa C, Fufa D, Endale B, Samson L (2010) Major Constraints and Health Management of Village Poultry Production in Rift Valley of Oromia, Ethiopia. American-Eurasian J. Agric. & Environ. Sci., 9: 529-533.
- 22. Navid HM (2011) Comparative Effect of Butyric, 2011. Supplementation with Cumin Essential Oil and Acid, Probiotic and Garlic on Performance and Prebiotic Fermacto on Humoral Immune Response, Serum Composition of Broiler Chickens. American Blood Metabolites and Performance of Broiler Eurasian J. Agric. and Environ. Sci., 11: 507-511.
- 23. Abdel-Rahman HA, Shawky SM, Ouda H, Nafeaa AA, Orabi SH (2013) Effect of Two Probiotics and Bioflavonoids Supplementation to the Broilers Diet and Drinking Water on the Growth Performance and Hepatic Antioxidant Parameters. Global Veterinaria 10: 734-741.
- Bale-Therik JF, Sabuna C, Jusoff K (2012) Influence of Grit on Performance of Local Chicken under Intensive Management System. Global Veterinaria 9: 248-251.