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Abstract
Background: Emerging worldwide evidences in support of adverse effects of cannabis smoke indicate its significant 

role in declining male fertility. The aim of the present study was to compare the percentage of damaged sperm cells 
and the expression profiles of cell survival protein p-Akt and pro-apoptotic protein Bax in non-smoker, tobacco smoke 
addicted and cannabis smoke addicted subfertile subjects.

Method: Semen samples were collected from 80 male subjects of reproductive age group in Southern Assam of 
North-East India. 46 (57.5%), 25 (31.25 %) and 9 (11.325%) of these subjects were found to be cigarette smokers, 
cannabis smokers and non-smokers respectively. ROS levels in semen samples were measured by chemiluminescence 
assay. Sperm DNA integrity were assessed by acridine orange test, toluidine blue staining and TUNEL assay. Expression 
profiles of p-Akt and Bax were observed by flow cytometry and western blot analysis.

Results: Among three groups, the cannabis smoke addicted subjects showed the highest level of seminal ROS 
production along with the highest percentage of sperm DNA damage, chromatin abnormalities and apoptotic cells. High 
expression of Bax and low expression of p-Akt was observed in non-smoker and tobacco smoke addicted subjects. 
Conversely, cannabis smoke addicted group showed the highest expression of both p-Akt and Bax proteins.

Conclusion: The present study indicates cannabis smoke addiction to be more detrimental for male reproductive 
health compared to the tobacco smoke. The over-expression of both Akt and Bax proteins among cannabis smokers 
suggest that the up-regulation of pro-survival protein Akt, during sperm meiotic division could have triggered the oxidative 
apoptosis of sperm cells via the up-regulation of pro-apoptotic protein Bax.

Keywords: Infertility; Cannabis addiction; ROS; DNA damage;
Apoptosis; Akt; Bax

Introduction
 Since last few decades, a sharp decline in male fecundity has been 

observed all over the world. In addition to congenital abnormalities, 
environmental and occupational exposures, changed lifestyle factors 
were also found to impact male reproductive health [1-3]. Several 
studies reported direct association of excessive tobacco and alcohol 
consumption with the declining male fertility [4,5]. Emerging studies 
have also correlated addiction to cannabis smoke with poor semen 
quality of men [6,7].Contents of cannabis smoke reduce antioxidant 
defence mechanism and increase oxidative stress in seminal plasma 
[8,9].

It has been estimated that around 150 million people across the 
globe were addicted to cannabis in the beginning of this millennia 
[10].The hallucinogenic effects caused by this recreational drug, 
entices people of different age groups and socio-economic classes in 
different countries all over the world [11,12]. ‘Cannabis’ is a generic 
term used for marijuana, hashish and hash oil and it is derived from 
the Cannabis sativa plant [13]. Δ9-Tetrahydrocannabinol (THC) is the 
unique compound of cannabis with major psychoactive effects and is 
said to act upon a specific cannabinoid receptor (CB1) in the brain 
[14,15]. In the 1990s, it was observed that cannabinoid compounds 
are naturally synthesized in human body from fatty acid derivatives 
termed as endogenous cannabinoids or endocannabinoids [16,17]. 
Endocannabinoids modulate several pathophysiologic processes like 
neuropathic pain, movement disorders such as Parkinson disease, 

Huntington disease and many other conditions like atherosclerosis, 
obesity as well as reproductive health [18]. However, the association 
between cannabis smoking and cancer is highly disputed as different 
case-control studies had inferred different results [19,20]. Both 
cannabinoid [21] and nicotine [22] receptors are coupled to the protein 
kinase B (Akt) signalling pathway. Akt is a serine threonine kinase 
which induces anti-apoptotic signal and inhibits apoptosis. However, 
the role of Akt coupled with cannabinoid receptor, varies from one 
disease to another. In Alzheimer’s disease, activation of cannabionoid 
receptor [23] and subsequent activation of Akt pathway can prevent 
brain cell death caused by the production of beta-amyloid protein [24].
Conversely, the Akt signalling cascade inhibits apoptosis and promotes 
tumour progression in cancer. Downstream signalling cascade of 
Akt has Bax protein. Bax is a member of the Bcl-2 (pro-apoptotic) 
family of proteins with accelerates apoptosis induced by a variety 
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of stimuli [25,26].It promotes mitochondrial cytochrome cleakage 
by dimerization and insertion into mitochondrial membrane which 
eventually leads to the nuclear fragmentation of the cell [27].

Several plausible theories explain the probable mechanism of 
abnormal sperm formation [28,29]. Recent advances in the field of 
genetics and molecular biology provided a great impetus to explore 
sperm chromosomal abnormalities at molecular level [30]. These 
studies suggested that mutation during sperm meiotic division may 
trigger DNA fragmentation and subsequent apoptosis of the cells in 
humans and experimental animals [31-33]. On the other hand, several 
literatures revealed that DNA damage in sperm cells is associated with 
elevated levels of reactive oxygen species (ROS) production causing 
oxidative stress [34-36]. At lower level, ROS play an important role in 
sperm maturation and functions such as capacitation and acrosome 
reaction [37]. However, increased ROS production, beyond the 
antioxidant capacity limit in seminal plasma often resulted in cell and 
DNA damage. The polyunsaturated fatty acid (PUFA) content makes 
the sperm cells susceptible to the peroxidation in the presence of 
seminal ROS, resulting in the up-regulation of apoptotic pathways [38-
42].

The aim of the present study was to compare the seminal oxidative 
stress, percentage of sperm DNA damage and expression profiles of 
Akt and pro-apoptotic protein Bax in sperm cells of three groups of 
non-smoker, tobacco smoke addicted and cannabis smoke addicted 
subfertile subjects in Southern Assam of North-East India.

Materials and methods collection of semen samples

Total (n=80) semen samples were collected for the study with 
96% power from the subjects of reproductive age group (25-40 years) 
living in Southern Assam of North-East India. Each subject was asked 
to sign an informed consent form approved by Institutional Ethical 
Committee (IEC), Assam University, Silchar and were asked to fill 
in a questionnaire. The subjects were instructed 2-3 days of sexual 
abstinence prior to semen ejaculation by masturbation into a 
sterile, wide mouthed, labeled container. Semen samples were 
collected as per guidelines of latest edition of World Health organization 
(WHO, 2010) manual. Patients with specific congenital abnormalities 
like-hypospadias, cryptorchisdism and other systemic diseases that 
may impair reproductive capacity such as hepatic, renal, endocrine, 
autoimmune diseases along with HIV infected patients were excluded 
from the study. 46 (57.5%), 25 (31.25 %) and 9 (11.325%) subjects were 
found to be cigarette smokers, cannabis smokers and non- smokers 
respectively. Semen analysis categorized these samples into two specific 
categories- Oligoasthenozoospermia and Teratozoospermia. Patients 
identified as Azoospermic (no sperm cells in seminal ejaculate) were 
also excluded from this study.

Measurement of reactive oxygen species

ROS levels in seminal ejaculates were measured by 
chemiluminescence assay using luminol (5-amino-2, 3- dihydro-1, 
4-phthalazinedione; Sigma, St Louis, MO) as the probe. 10 µL of 5 
mmol/L luminol prepared in dimethyl sulfoxide (Sigma Chemical) were 
added to 400 μL of the washed sperm suspension. Negative controls 
were prepared by replacing the sperm suspension with 400 μL phosphate 
buffered saline. Positive control included 400 μL of PBS and 50 μL of 
hydrogen peroxide (30%; 8.8 M) in triplicates. Chemiluminescence was 
measured for 15 minutes using a luminometer (Promega Glomax 20/20 
Luminometer).The results were expressed as relative light units (RLU)/
sec/106 sperm [43].

Tests for sperm DNA integrity acridine orange test (AOT):

Acridine orange test (AOT) is a simple microscopic procedure 
based on acidic conditions to denaturant DNA followed by staining 
with acridine orange. The AOT measures the metachromatic shift of AO 
fluorescence from green (native DNA) to red (denatured DNA). Sperm 
smears were fixed in Carnoy’s solution (60% ethanol, 30% chloroform 
and 10% glacial acetic acid) and were subsequently stained with acridine 
orange solution (0.02% acridine orange in citratephosphate buffer, pH 
2.5) according to the procedure of Tejada et al. [44]. After 5 minutes of 
staining, each smear was washed with distilled water, covered with a 
cover slip and sealed with a synthetic resin to prevent the smear from 
drying. Smears were examined within 1 day using a Leica fluorescence 
microscope (Leica DM 4000 B) with the following filter combination: 
450 nm to 490 nm excitation and 520 nm barrier filters. All spermatozoa 
with fully compacted nuclei were examined. Nuclei of 300 spermatozoa 
were scored on the basis of their fluorescence (green/red). In recent 
studies percentage of DNA fragmentation has been represented as DFI 
(DNA fragmentation Index).

% of Red fluorescenceDFI=
% of Total (red+green) fluorescence

Toluidin blue staining for sperm chromatin abnormalities

Toluidine blue (TB) staining had been reported to be a sensitive test 
for incomplete DNA structure and packaging [45,46]. A thin smear was 
prepared and the air-dried and fixed in freshly prepared 96% ethanol-
acetone (1:1) at 4°C for 1 hour. After that the samples were hydrolyzed 
in 0.1 N HCL at 4°C for 5 minutes. Thereafter, the slides were rinsed 
3 times in distilled water for 2 minutes and finally stained with 0.05% 
TB (in 50% McIlvaine’s citrate phosphate buffer, pH 3.5, Merck) for 5 
minutes at room temperature. The slides were rinsed briefly in distilled 
water. Under light microscopic evaluation, a total of 300 spermatozoa 
were counted in different areas of each slide using oil immersion with 
× 200 magnifications. Sperm cell heads with good chromatin integrity 
stained light blue and those of diminished integrity were deep blue in 
colour.

TUNEL assay of sperm cells

Apoptosis in sperm cells was determined by the TUNEL technique 
using TACS® 2 TdT DAB kit (Trevigen, Catalogue No.4810-30-K). The 
terminal deoxynucleotidyl transferase-mediated (TdT) deoxyuridine 
triphosphate (dUTP) nick end labeling assay (TUNEL) is a direct 
quantification of sperm DNA fragmentation. dUTP is incorporated 
at single stranded and double stranded DNA fragments in a reaction 
catalyzed by the enzyme TdT. The DNA breaks based on the 
incorporated dUTP are then labelled and counter stained with 1% 
Methyl Green [47]. Sperm cells are then classified as TUNEL positive 
(deep brown), negative (green) and expressed as a percentage of the 
total sperm in the population. A total of 300 spermatozoa were counted 
in different areas of each slide using oil immersion under bright field 
microscope with × 400 magnifications.

Flow cytometric analysis

The sperm cell pellets were suspended in 900 µL in PBS and 
centrifuged at 4000 rpm for 5 minutes at room temperature. The pellet 
was resuspended in 900 µL PBS and this step was repeated twice. The 
final pellet was resuspended in 100 µL PBS and the number of cells 
were counted using haemocytometer. 5 x 106 sperm cells were dissolved 
again in 100 µL PBS and the suspension incubated with 0.5% TritonX- 
100 for 20 minutes at room temperature followed by PBS wash. The 

https://en.wikipedia.org/wiki/Ethanol
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cells were next incubated with Alexa Fluor 488 tagged anti p-Akt and 
Bax antibodies for 1hour at room temperature. After two consecutive 
PBS washes, the cells were fixed using 100µL paraformaldehyde. Prior 
to acquiring, 200 µL sheath fluid was added. Expression of proteins 
were obtained using BD FACS Calibur machine.

Protein extraction and western blot analysis

To prepare a whole sperm cell extract aliquots of 0.5 ml samples 
were centrifuged at 7500 g for 5 minutes at room temperature and 
the supernatant was discarded. The resulting sperm pellet was 
resuspended in 500 µL extraction medium (2% SDS, 28% sucrose, 
12.4 mM N,N,N9,N9-tetramethylethylenediamine and 185 mM 
Tris–HCl, pH 6.8) and immediately incubated for 5 minutes at 
100°C. After centrifugation the concentration of proteins in the 
supernatant was measured using BSA kit (Thermo Scientific) as per 
the manufacturer’s protocol. Finally, extracts were stored at -20°C 
until used for western blot analysis [48]. The proteins were subjected 
to SDS-PAGE and electro-transferred to nitrocellulose membranes. 
The membrane was blocked with 5% non-fat dry milk in Tris-buffer 
saline (20 mM Tris HCL and 137 mM NaCl, pH-7.5) for 1 hour at 
room temperature. Immunogenicity was detected by incubation of 
the membrane overnight with appropriate primary antibodies p-Akt 
and Bax (1:200) and specific proteins were detected by the enhanced 
chemiluminescence system (Biovision ECL Western Blot substrate).
The Signal intensity of the band was detected by densitometer (Bio 
Rad, GS 800).β-actin expressions were tested for confirming equal 
distributions of proteins.

Statistical analysis

Statistical analyses were performed using Graph Pad Prism 5.00 
gold software package. t-test was used to compare the means. Median 
values were calculated as 25th and 75th percentile. Spearman rank 
correlation coefficient (r) was calculated to find the correlation between 
variables. P ≤ 0.05 was taken to be statistically significant.

Results
The results of the present study showed no significant deviation 

(p>0.05) in the mean age (in years) and average BMI (body mass 
index) (Kg/m2) of non-smoker, tobacco smoke addicted and cannabis 
smoke addicted subjects [Mean age, non-smokers-29.28 ± 1.97, 
tobacco smokers-29.63 ± 2.95, cannabis smokers - 29.08 ± 2.43; BMI, 
non-smokers-24.14 ± 1.28, tobacco smokers-24.08 ± 1.44, cannabis 
smokers-24.22 ± 1.41] which could be the contributing factors of their 
fertility status.

ROS production in semen samples
The oxidative stress was measured by assessing the production of ROS 

level in seminal ejaculates of three groups of subjects. The highest and the 
lowest ROS production was observed in subjects addicted to cannabis 
smoke [161.5 (154; 163.25) (RLU/sec/106 sperm)] and in non-smoker 
group respectively [123.25 (132; 136.8) (RLU/sec/106 sperm)] whereas, 
the tobacco smoke addicted subjects showed the intermediate level of ROS 
production [144.5 (142; 153.5) (RLU/sec/106 sperm)] (Table 1).

Acridine orange fluorescence study of sperm nuclei
Table 1 summarizes significant differences (p<0.001) in 

the percentages of sperm cell DNA damage (red fluorescence; 
single stranded/denatured DNA) among three groups of subjects 
[cannabis smokers- 51.77 ± 4.61, non-smokers-36.33 ± 3.97, tobacco 
smokers-41.82 ± 8.14 respectively] (Figure 1A-1D).

Assessment of sperm chromatin abnormalities among differ-
ent subjects

The percentage of abnormal sperm chromatin structure and its 

Variables Non-smoker  Tobacco smoker Cannabis smoker  p value
              (n=9)               (n=46)                   (n=25)

ROS production [(RLU)/sec/106sperm] 123.25 (132; 136.8)**  144.5 (142; 153.5)** 161.5 (155; 163.6)**
36.33 ± 3.97 (47.53)  41.82 ± 8.14a (53.32) 51.77 ± 4.61a,b (62.17) p<0.001

% of Sperm DNA damage
(DFI)                                                                       36.81 ± 4.46  45.06 ± 2.80a 52.83 ± 4.67a,b p<0.001
 % of Sperm chromatin abnormalities

37.93 ± 3.84  42.92 ± 1.98a 52.44 ± 2.87a,b p<0.001
% of Apoptotic Sperm Cells

** Value s are represented as median (25th; 75th percentile) 
Percentages are calculated as Mean ± SD
DFI- DNA Fragmentation Index
ap<0.01 statistically significant compared to non-smoker group.
bp<0.01 statistically significant compared to tobacco addicted group

Table 1: Relative ROS production and percentage of Sperm cell DNA integrity among three groups of patients.

Figure 1: High percentage of sperm cell DNA damage in subjects addicted 
to Cannabis smoke: Acridine orange stain to native DNA green (1) and to 
damage DNA red (2) (under Epifluorescence microscope, 40x). Percentage of 
damaged and undamaged sperm cell DNA in A. the non-smokers B. in tobacco 
smoke addicted subjects and C. in the cannabis smoke addicted subjects. 
D. A graphical representation of percentage of sperm DNA damage in three 
different groups showing the highest of DNA damage in the cannabis smoke 
addicted group. Scale bar=50 µm.
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condensation was compared between the three groups by Toluidine 
Blue staining (Table 1). The results showed highest percentage (52.83 
± 4.67) of sperm chromatin abnormalities among cannabis smokers. 
Tobacco smokers (45.06 ± 2.80) and non- smokers (36.81 ± 4.46) also 
showed moderately high percentage of sperm chromatin abnormalities 
(Figure 2A-2D).

Variation in the percentage of apoptotic sperm cells among 
three groups

The TUNEL assay results were again consistent with the DNA 
fragmentation results. The overall incidence of sperm cell apoptosis 
was significantly different (p<0.001) among the three groups of subjects 
(Table 1). The highest percentage (52.44 ± 2.87) of apoptotic sperm cells 
were observed again in subjects addicted to cannabis smoke. Tobacco 
smokers (42.92 ± 1.98) and non-smokers (37.93 ± 3.84) also showed 
moderately high percentage of apoptotic sperm cells (Figure 3A-3D).

Correlation between increasing seminal ROS production and 
percentage of DNA damage, chromatin abnormalities and 
apoptosis in sperm cells

The Spearman correlation analysis showed significant (p<0.0001) 
positive correlations between increasing seminal ROS production 
and percentage of sperm DNA damage, chromatin abnormalities and 
the percentage of apoptotic sperm cells in cannabis smoke addicted 
subjects. However, no significant association between these parameters 
was observed among non-smokers and tobacco smokers (Table 2).

Differential expression of P-Akt and Bax protein in sperm 
cells of three groups

The flow cytometric analysis showed high positive expression of 
Bax protein in all three groups of subjects, whereas high expression of 
p-Akt was observed among cannabis smokers only (Figure 4A-4D). This 

observation was further confirmed by the western blot analysis results 
(Figure 3). The quantitative densitometric analysis showed highest 
percentage (1.27 ± 0.15) of Bax protein expression in cannabis smoke 
addicted subjects compared to the non-smokers and tobacco smokers 
(0.845 ± 0.052 and 1.01 ± 0.02 respectively). The highest percentage 
(1.08 ± 0.090) of p-Akt was also observed in cannabis patients’ 
sperm cells, whereas the other two groups [non-smokers (0.645 ± 0.01), 
tobacco smokers (0.86 ± 0.060)] showed comparatively low percentage 
of p-Akt expressions (Figure 5A and 5B).

Discussion
Worldwide evaluation of different infertility cases across the 

world suggests that the largest percentage of patients experience 
idiopathic infertility [49]. A proper understanding of the underlying 
mechanism causing male factor infertility requires insightful analysis 
of molecular and cellular events involved in human spermatogenesis 
[50]. Spermatogenesis is a complex process which produces mature 
sperm cells from undifferentiated germ cells via mitosis and meiosis. 
Previous work by Zhuang et al. [33] showed that chromosomal 
aberration during spermatogenesis causes apoptosis of haploid 
sperm cells and decline in the fertilizing potential [33]. An important 
review work by Diemer and his co-worker discussed about different 

Figure 2: Percentage of sperm chromatin abnormalities among three 
subfertile groups:
Chromatin structures of sperm cells assessed by toluidine blue staining. 
Sperm cell heads with good chromatin structures were light blue (1); those 
of abnormal chromatin structure were deep blue (2) (under bright field, 20x). 
Percentage of sperm chromatin abnormalities in sperm cells of A. non-smokers 
B. tobacco smokers and C. cannabis smokers. D. A graphical representation of 
percentage of sperm DNA damage in three different groups of subjects. Scale 
bar=50 µm.

Figure 3: A comparative analysis of percentage of apoptotic sperm cells 
in three groups:
TdT (terminal deoxynucleotidyl transferase)-mediated dUTP nick-end labeling 
(TUNEL) assay of spermatozoa. The apoptotic sperm cells were identified 
with deep brown colour (1) and the normal cells were stained light green (2) 
(under bright field, 40x). Percentage of apoptotic sperm cells observed in A. 
non-smokers B. tobacco smokers and C. cannabis smokers. A graph showing 
percentage of apoptotic sperm cells in three different groups of subjects. Scale 
bar=50 µm.

Groups % of Sperm DNA 
damage

 % of Sperm 
chromatin 

abnormalities

% of Apoptotic 
Sperm Cells

      r                     p r                            p r                            p

Non-smoker   0.025               NS 0.050                 NS -0.666                NS
Tobacco smoker   0.021              NS 0.084                NS -0.1098              NS    
Cannabis smoker  0.9980      <0.0001 0.9955       <0.0001 0.9928       <0.0001

NS-Not Significant; r-spearman’s rank correlation coefficient 
Table 2: Comparison of sperm DNA integrity among three groups of patients.
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genetic disorders during spermatogenesis [51]. A study by Jamieson 
et al. [52] showed that chromosomal aberration has profound effect 
on spermatogenesis and in some cases few mature spermatozoa are 
produced which eventually undergo apoptosis. On the other hand, 

increasing evidences have strongly correlated declining semen 
parameters with addiction to tobacco and cannabis smoke [4,6,7]. 
Some of the significant studies by Rossato et al. and Kolodny et al. have 
linked rampant cannabis consumption with declining fertility rate in 

Figure 4: Analysis of p-Akt and Bax protein expressions in Non-smoker, Tobacco smokers and Cannabis smokers: 
Forward-angle light scatter (FSC) versus side-angle light scatter (SSC) dot plots obtained by flow cytometry is represented here. The gates used to select the events for 
subsequent Alexa fluor 488 analyses and were determined depending on the event position in the dot plot, related with its FSC versus SSC. A. Non-smoker subjects 
showing 25.5% Bax positive sperm cells and only 3.5% p-Akt positive cells. B. Subjects addicted to tobacco smoke showing 32.1% Bax positive sperm cells and only 
4.2% p-Akt positive cells C. 44.6% Bax positive and 30.5% p-Akt positive sperm cells were observed in cannabis smokers. D. A graph showing relative expressions of 
Bax and p-Akt proteins in three groups of subjects by flow cytometry.

Figure 5: Quantification of p-Akt and Bax protein expressions in sperm cells of three groups.
A. The western blot analysis results showing relative expression of p-Akt and Bax protein in non-smoker, tobacco smoke addicted and cannabis smoke addicted 
subjects. Beta-actin expressions confirmed equal distribution of proteins. B. The graphical representation of densitometric analysis showing highest percentage of both 
p-Akt (1.08 ± 0.090) and Bax (1.27 ± 0.29) protein expressions in cannabis smoker subjects compared to the other two groups [non-smokers, p-Akt (0.645 ± 0.01), Bax 
(0.845 ± 0.052) and tobacco smokers, p-Akt (0.86 ± 0.060), Bax (1.01 ± 0.02)].
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men [53,54]. In particular, it has been revealed by the works of Schuel 
H et al. and Berdyshev EV et al. [55,56]that cannabinoids influence 
human sperm functions, leading to a reduction of their fertilizing 
ability in both invertebrates and vertebrates. In the present study we 
observed the highest percentages of seminal ROS production, damaged 
sperm cell DNA, chromatin abnormalities and apoptotic sperm cells 
in cannabis addicted individuals compared to the non-smokers and 
tobacco smokers. The percentage of apoptotic sperm cells was also high 
in the tobacco smokers which could be one of the predominant causes 
of their declining fertility status. The comparative analysis of our study 
suggested that cannabis consumption could be more deleterious for the 
fertility status of an addicted individual compared to those addicted to 
tobacco smoke. Previous works by Yamaguchi and his co-worker [57] as 
well as Gardai et al. [58] showed that over-expression of Akt suppresses 
the localization of Bax to mitochondria and subsequent apoptosis of 
the cell. Interestingly, in this study we observed high expression of both 
Akt and pro-apoptotic protein Bax in sperm cells of cannabis smokers 
but comparatively lower expression of Akt in the other two groups 
of subjects. Although the precise molecular mechanism behind this 
phenomenon is yet to be explored, one plausible hypothesis would be 
up-regulation of Akt during sperm meiotic division. Mutation during 
sperm meiotic division might trigger the up-regulation of Akt protein 
or the activation of Akt may occur naturally. A work by Andersen et 
al. showed that activation of Akt and the subsequent phosphoinositide 
3-kinase signalling pathway promotes cell growth and differentiation 
in oocytes [59]. Furthermore, another work by Veronique Nogueira 
et al. suggested that Akt induces oxidative senescence and sensitizes 
cells to undergo apoptosis [60]. It can be hypothesized that the up-
regulation of pro-survival protein Akt during sperm meiotic division 
could not induce the survival of haploid sperm cells as they do not 
divide. Alternatively, Akt triggered the oxidative apoptosis of the sperm 
cells via pro-apoptotic Bax protein. This could be the possible reason 
behind the synchronous expression of Akt and Bax in the sperm cells 
of cannabis smokers. In conclusion, the present study clearly shows 
that cannabis smoke is far more detrimental for the male reproductive 
health. Additionally, it causes up-regulation of Akt protein which in 
turn triggers the oxidative apoptosis of sperm cells via Bax protein. 
Although in-depth molecular studies need to be executed for a better 
understanding of these phenomena.
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