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Introduction
The brain exerts considerable structural and functional plasticity 

[1-3]. As an important interface between neurons, synapses are 
required for computation of circuits and information processing. 
Accumulating evidence indicates that once formed, synapses and 
dendrites can be maintained for long periods of time. However, they 
are eliminated or rewired to respond to environmental changes, as 
reported by Walsh and Lichtman (2003) [4]. The cell biology of neurons 
has been developed to the understanding of pathological mechanisms 
of brain disorders. This review article will pay an attention to the 
biological and pathological role of BDNF, which modulate synaptic 
plasticity in adult brain because this knowledge could prove beneficial 
for the development of new therapies against brain diseases. Dendritic 
spines are actin-rich structures, which are part of most excitatory 
synapses in the central nervous systems. Recent studies have shown 
that the morphological plasticity of the spine plays a crucial role in 
higher brain functions, such as learning and memory. This review 
focuses on recent advances in the research of dendrite spines, 
synaptic plasticity, and BDNF. Lastly, we will introduce recent reports 
demonstrating the role of BDNF in depression.

Dendrite Spines 
The majority of excitatory synapses develop small protrusions on 

dendrites, called dendrite spines, which form the main platforms of 
synaptic input for neurons. Neurotransmitter receptors are largely 
localized at the surface of spines to counteract the presynaptic 
structure, axon terminals. Previously, consensus was that spine 
morphology is controlled for higher brain functions, such as learning 
and memory. Indeed, this notion has been supported by a significant 
number of studies. The strength of synaptic activity is controlled by 
the size and number of dendritic spines [5,6]. Activity-dependent 
remodeling and stability of spine structures is an important cellular 
mechanism for the maintenance and refinement of neuronal circuits 
[7,8]. Developing brain spines are structurally dynamic. Conversely, 
stable spines predominate during adult stages [2]. Interestingly, 
imaging studies demonstrate experience-dependent structural 
alterations of spines in animals [6,8], and spine genesis has a salient 
association with human cognitive function [9]. Moreover, autopsy 

studies of patients with dementia indicated a correlation between 
brain dysfunction and abnormal spine morphology [10,11]. Although 
synaptic function cannot be assessed from spine morphology, the 
regulatory mechanisms of spine morphogenesis, and the dynamics of 
spine morphology would provide insight into higher brain functions 
and their disorders. 

Dendritic spines are actin-rich protrusions [12,13] and highly 
dynamic [14]. The dynamics are controlled by the architecture of their 
actin cytoskeleton [15]. The formation, maturation, and plasticity 
of spines depend on actin cytoskeleton remodeling [16,17]. Many of 
the key molecules controlling this process are members of the Rho-
family of small GTPases [18-20], and several actin-binding proteins 
[21]. Most extracellular signals, affecting the organization of actin 
cytoskeleton in cells, converge inside the cells on Rho GTPases, such 
as RhoA, Rac1, and cdc42 [22,23]. The activation of RhoA-GTPase 
signaling, through the stimulation of glutamate receptors, could 
control actin cytoskeleton reorganization and spine morphology 
[24]. Rac activity also controls actin dynamics. The small GTPase 
activity itself is under the control of GEFs, which serve as activators 
of small GTPases [25]. Inhibition of the expression or function of 
upstream regulators of the actin cytoskeleton, including Rac-GEFs, 
Rac, and Rac targets such as PAK, cause the loss of spines [26-29]. 
The activation of these GTPase molecules leads to the assembly and 
organization of actin filaments in spines by controlling the activity 
of a variety of actin binding proteins. Many actin-binding proteins 
have been identified, such as Arp2/3, cortactin, ADF/cofilin, profilin, 
gelsolin, drebrin and neurabin [16,21]. Some actin-binding proteins 
inhibit the growth of actin filaments in spines by capping the growing 
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ends of actins, whereas others exhibit opposite roles in the capping 
mechanism, or promote filament polymerization by the nucleation 
of new filaments [30]. This balancing mechanism is crucial for rapid 
control of actin dynamics within the spines. 

The morphological changes in spines were shown in two 
electrophysiological models of synaptic plasticity, namely long-
term potentiation (LTP) and long-term depression (LTD). LTP 
stimulation increased the density of spines [31], and enlarged existing 
spines [18]. LTD, which induces a long-lasting reduction in synaptic 
transmission by low-frequent stimulation, decreases spine density 
[32,33], and promotes spine shrinkage [34]. Previous studies indicate 
a correlation between the actin cytoskeleton, spine morphology, 
and synaptic strength [12,35-37]. Hippocampal pyramidal neurons 
increase and decrease the volume of dendritic spines during LTP 
and LTD, respectively [18,19,34]. Such activity-dependent spine 
morphology alterations, likely caused by the reorganization of the 
actin cytoskeleton, may contribute to the change in synaptic strength.

The Role of Brain-derived Neurotrophic Factor (BDNF) 
in Synaptic Plasticity 

The morphology of dendritic spines is regulated by several 
molecular and cellular mechanisms [21,37]. In the central nervous 
system (CNS), BDNF plays a crucial role on the regulation of 
functional and structural plasticity. This paragraph focuses on this 
important aspect, and the reports are plenty. For more understating 
this part, the fantastic figures of several excellent reviews [38,39] 
could help the readers to understand these progresses.

In 1982, the group of Professor Barde et al. (1982) [40] reported 
the isolation of a new neurotrophic factor BDNF. Since this discovery, 
the biological role of BDNF for developing neurons has been shown 
extensively: BDNF promotes the differentiation and survival of 
developing neurons in vivo and in vitro [41]. In 1986, the group of 
Professor Chao reported on the first neurotrophin receptor p75NTR, 
which binds the neurotrophins with relatively low affinity [42]. In 1991, 
tropomyosin sensitive receptor kinases (Trks), were identified as the 
high-affinity receptors for the neurotrophin family of growth factors 
Reichardt [43]. Since these discoveries, Trk signaling, and BDNF-
TrkB signaling has been characterized in plenty of brain functions: 
neuronal cell survival, neurite growth, cell migration, glutamate 
dependent spine, dendritic growth, synapse formation, stabilization, 
and potentiation. The Trk receptor tyrosine kinase family contains 
TrkA and TrkC, receptors for nerve growth factor (NGF) and 
neurotrophic factor 3 (NT-3), and TrkB, for BDNF and neurotrophic 
factor 4 (NT-4). The molecular properties of BDNF-TrkB signaling are 
beyond the scope of this article and are reviewed elsewhere [44]. There 
are several BDNF receptors (TrkB isoforms) in the mammalian CNS 
[43]. The full-length TrkB isoform causes tyrosine phosphorylation in 
the intracellular Trk domains, thereby exerting transduction of the 
BDNF/TrkB signaling. These events trigger the activation of mitogen-
activated protein kinase (MAPK), phosphatidylinositol 3-kinase 
(PI3K), or phospholipase C gamma (PLCγ).

Electrophysiological studies have demonstrated that BDNF 
have a key role in synaptic plasticity [39,45]. BDNF far surpasses 
all other neurotrophins in its role in regulating LTP. Application 
of mature form of BDNF facilitates the early phase of LTP (E-LTP) 
in the hippocampus [46-48]. Inhibition of BDNF activity, by gene 
knockout or functional blocking using BDNF antibody or TrkB-
immunoglobulin G, attenuates hippocampal E-LTP [46,48-50]. 
Impairment in BDNF knockout mice was rescued by acute application 

of recombinant BDNF [51,52]. Further evidence for the role of BDNF 
in LTP was illuminated [53]. Moreover, application of BDNF indicates 
the rapid enhancement of neurotransmitter release [54]. This effect 
is caused primarily by a presynaptic mechanism [55]. Postsynaptic 
effects of BDNF on dentate LTP in slice cultures and on NMDA 
(N-methyld-aspartate) receptors in cultured hippocampal neurons 
have been reported [56,57].

Like BDNF-TrkB signaling, L-LTP is known to induce gene 
expression through PI3K-Akt-mTOR and MAPK/Erk pathways [58]. 
Synaptic activity drives these signaling pathways that regulate the 
assembling of TrkB with synaptic proteins [59], gene transcription 
[60,61], protein translation [62], and trafficking of TrkB into synapses 
[59]. PI3K signaling regulates trafficking a postsynaptic density 
protein, PSD-95 to a synapse and cAMP regulates formation of 
synaptic PSD-95-TrkB complex [59,63]. BDNF-TrkB signaling 
regulates protein translation through both MAPK/Erk and PI3K-Akt-
mTOR pathways [62].

Neuronal activity leads to the expression of over 300 genes [51], 
including brain-derived neurotrophic factor (BDNF), one of the 
major mediators of activity-dependent functions [39]. Regulation of 
BDNF has been studied in rodents thoroughly. Rat BDNF (rBDNF) 
gene was first described to have four promoters driving expression 
of transcripts containing different 5′ exons spliced to a single coding 
exon [52]. To date, it has been reported that rodent BDNF contains 
nine exons [64]. Cytoplasmic Ca2+ plays an important role, because 
it activates BDNF transcription through protein kinase cascades 
that lead to the activation of several transcription factors, including 
cyclic AMP response element binding protein (CREB) [58]. These 
reports support the important theory concerning the adult brain: the 
modulation of synaptic plasticity by BDNF. 

Compared to that of LTP, few studies support the hypothesis that 
BDNF modulates LTD [38]. In the visual cortex, BDNF attenuates 
LTD in layer II/III synapses of young adult rats [65]. However, it 
was reported that pro- and mature neurotrophins activate different 
receptor/signaling to have opposing effects on neuronal survival 
[66]. proBDNF is a precursor form of BDNF. It was reported that the 
signaling of BDNF/TrkB and proBDNF/p75NTR promote neuronal 
survival and death, respectively [67,68]. There are reports showing that 
proBDNF may play a role in synaptic depression through p75NTR. 
The p75NTR mutant mice exhibit impairment in the behavioral tests 
of memory [69] and habituation [4]. Recently, it was demonstrated 
that proBDNF modulated hippocampal LTD through the activation of 
p75NTR [70]. The NMDA receptor-dependent LTD was pronounced 
at hippocampal synapses, but conversely and severely deficient in 
p75NTR-knockout animals [70,71].

The Possible Role of BDNF in the Regulation of 
Structural Plasticity 

Given that the long-term changes in synaptic efficacy (LTP and 
LTD) lead to structural alterations of synapses, the bi-directional 
structural changes of synaptic structures may be controlled by the 
growth activity of BDNF. In line with this notion, it was shown that 
the exposure to BDNF led to axonal branching [72,73], dendritic 
growth [74,75], and refinement of synapses in an activity-dependent 
manner [76]. It was shown that long-term treatment of hippocampal 
slice with BDNF increases synapse number and spine density in 
apical dendrites of pyramidal neurons in the hippocampus [77], 
suggesting that BDNF acts on different types of spine, depending 
on spontaneous synaptic transmission. Moreover, BDNF regulation 
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of spine formation in the dendrites of hippocampal neurons is 
controlled by cyclic AMP (cAMP), a signaling molecule involved in 
L-LTP [59]. Thus, spontaneous neuronal activity and the consequent 
rise in the intracellular concentration of cAMP might be important 
for the spino-genesis exerted by BDNF.

The study of pro-neurotrophins has generated new focus into 
neurotrophin researches and disorders in the nervous system [78]. 
Using cultured hippocampal neurons, we demonstrated that proBDNF 
reduced the density of dendritic spines [68]. Then, the amplitude, 
but not the frequency, of spontaneous activity was significantly low 
in proBDNF-treated cultures [68]. While cultured neurons were 
used, this report suggests the role of BDNF processing in structural 
plasticity. There was more physiological study using slice cultures. 
Zagrebelsky et al. [79] demonstrated that the p75NTR negatively 
modulates dendrite complexity and spine density in hippocampal 
neurons.

Advance of BDNF Biology for the Development of New 
Therapies against Depression

Cell biology of BDNF has been developing, and is now aimed at the 
understanding of pathological mechanisms of brain disorders [80,81]. 
In particular, there are several studies indicating that BDNF is involved 
in depression. The initial reports showed that the expression of BDNF 
was decreased [82,83], and that antidepressant treatment rescued the 
expression of BDNF and led to the proposal of the “neurotrophin 
hypothesis of depression” [84]. Another important hypothesis is that 
the structure and function of synapses may be significantly impaired 
in depressed brain [84,85]. Thus, a bidirectional role of BDNF and 
proBDNF in structural and functional plasticity is also thought to 
be a tempting model [81] because it has been shown that proBDNF 
promotes synaptic depression and spine retraction [68,70]. 

A single sub-psychomimetic dose of ketamine, an ionotropic 
glutamatergic NMDAR (NMDA receptor) antagonist, produces fast-
acting antidepressant responses in patients suffering from major 
depression [86-88]. Depressed patients report the alleviation of major 
depressive disorder symptoms within two hours of a single, low-
dose intravenous infusion of ketamine, with effects lasting up to two 
weeks [86-88], while traditional antidepressants (serotonin re-uptake 
inhibitors) take weeks to reach efficacy. This delay is a major drawback 
to current therapies for major depressive disorder, and faster-acting 
antidepressants are needed, particularly for patients at risk of suicide 
[88]. Ketamine has the ability to produce rapid and long-lasting 
antidepressant responses in depressed patients. 

Very recently, Autry et al. [89] demonstrated that ketamine and 
other NMDAR antagonists produce fast-acting antidepressant-like 
effects in mouse models, and, interestingly, these effects depended 
on the rapid synthesis of BDNF. The ketamine-mediated blockade of 
NMDAR deactivated eukaryotic elongation factor 2 (eEF2) kinase, 
resulting in the reduction in the phosphorylation levels of eEF2 
and de-suppression of the translation of BDNF, indicating that the 
regulation of protein synthesis by spontaneous neurotransmission. 
The ketamine administration produced antidepressant-like effects 
in the forced swim test in mice [90,91]. These cellular and molecular 
findings would be a viable therapeutic mechanism approach for the 
development of fast-acting antidepressants.

As we described in this review, the cell biology of synaptic 
plasticity and BDNF has now fully developed and extended to the 

understanding of pathological mechanisms of brain disorders. 
This knowledge could prove beneficial for the development of new 
therapies against brain diseases.
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