

B-Cell Dysregulation in Neuroinflammatory Diseases: From Autoantibodies to Immunotherapy

Claudiu Diaconu*

Department of Neurology, Institute of Clinical Research, London, United Kingdom

Abstract

Neuroinflammatory disorders, encompassing a diverse group of conditions affecting the central nervous system (CNS), are increasingly recognized to involve a significant B-cell component. This review synthesizes current findings regarding the role of B cells in the pathogenesis of these disorders, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and other autoimmune encephalitides. It explores the diverse functions of B cells in neuroinflammation, from autoantibody production to cytokine secretion and antigen presentation, and discusses the therapeutic implications of targeting B cells in these conditions.

Keywords: B cells; Neuroinflammation; Multiple sclerosis; Neuromyelitis optica; Autoantibodies; Cytokines; Antigen presentation; B-cell therapies

Introduction

Neuroinflammatory disorders are a heterogeneous group of conditions characterized by inflammation within the CNS, leading to neuronal damage and neurological dysfunction [1]. While T cells have historically been the primary focus of research in these disorders, accumulating evidence highlights the crucial role of B cells in their pathogenesis. B cells contribute to neuroinflammation through a variety of mechanisms, including the production of autoantibodies, secretion of pro-inflammatory cytokines, antigen presentation to T cells, and formation of ectopic lymphoid structures within the CNS [2]. This review synthesizes current findings regarding the diverse roles of B cells in several key neuroinflammatory disorders, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and other autoimmune encephalitides, and discusses the therapeutic implications of targeting B cells in these conditions.

Results

B cells contribute to neuroinflammation through several distinct mechanisms. The most well-established role of B cells is the production of autoantibodies that target CNS antigens. In NMOSD, autoantibodies against aquaporin-4 (AQP4), the most abundant water channel in the CNS, are pathogenic. These AQP4-IgG antibodies bind to AQP4 on astrocytes, leading to complement activation, astrocyte damage, and subsequent demyelination and inflammation. In some forms of autoimmune encephalitis, such as N-methyl-D-aspartate receptor (NMDAR) encephalitis, autoantibodies targeting neuronal surface antigens, like the GluN1 subunit of the NMDAR, directly impair neuronal function [3]. In MS, while a specific pathogenic autoantibody has not been definitively identified, evidence suggests a role for autoantibodies against myelin components and other neuronal antigens in disease pathogenesis. Beyond autoantibody production, B cells also contribute to neuroinflammation through the secretion of pro-inflammatory cytokines, such as TNF-a, IL-6, and lymphotoxin-a (LTa). These cytokines can exacerbate inflammation, promote demyelination, and contribute to neuronal damage. B cells can also act as antigen-presenting cells (APCs), presenting CNS antigens to T cells and activating them within the CNS. This interaction between B cells and T cells can amplify the inflammatory response and contribute to disease progression. In some neuroinflammatory conditions, B cells can organize into ectopic lymphoid structures, such as meningeal

J Clin Exp Neuroimmunol, an open access journal

inflammation, within the CNS. These structures can serve as local sites for B-cell activation, proliferation, and autoantibody production, further contributing to neuroinflammation . Studies have shown that B cells can also influence the function of other immune cells within the CNS. For instance, B cells can interact with microglia, the resident immune cells of the brain, and modulate their activation state [4-6]. This interaction can contribute to both pro-inflammatory and anti-inflammatory processes within the CNS. Genetic studies have also implicated B-cellrelated genes in the susceptibility to neuroinflammatory disorders. Polymorphisms in genes encoding B-cell receptors, signaling molecules, and cytokines have been associated with an increased risk of developing MS and other autoimmune conditions [7]. The efficacy of B-cell depletion therapies in several neuroinflammatory disorders provides strong evidence for the pathogenic role of B cells. Rituximab, an anti-CD20 monoclonal antibody that depletes B cells, has shown efficacy in treating NMOSD and some forms of autoimmune encephalitis. Ocrelizumab and of atumumab, also anti-CD20 antibodies, are approved for the treatment of relapsing forms of MS. These therapies reduce the number of circulating B cells and subsequently decrease autoantibody production, cytokine secretion, and antigen presentation, leading to a reduction in inflammation and clinical improvement. Recent research has also focused on identifying specific B-cell subsets that contribute to neuroinflammation. Studies have shown that certain B-cell subsets, such as memory B cells and plasmablasts, may play a more prominent role in disease pathogenesis.

Discussion

The findings summarized in this review highlight the diverse and crucial roles of B cells in the pathogenesis of neuroinflammatory disorders. B cells contribute to neuroinflammation through multiple mechanisms, including autoantibody production, cytokine secretion,

Citation: Claudiu D (2024) B-Cell Dysregulation in Neuroinflammatory Diseases: From Autoantibodies to Immunotherapy. J Clin Exp Neuroimmunol, 9: 259.

Copyright: © 2024 Claudiu D. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

^{*}Corresponding author: Claudiu Diaconu, Department of Neurology, Institute of Clinical Research, London, United Kingdom; E-mail: Diaconu@clinres.ac.uk

Received: 01-Sep-2024, Manuscript No. jceni-24-156367; Editor assigned: 03-Sep-2024, Pre QC-No. jceni-24-156367; (PQ); Reviewed: 17-Sep-2024, QC No: jceni-24-156367; Revised: 24-Sep-2024, Manuscript No. jceni-24-156367; (R); Published: 30-Sep-2024, DOI: 10.4172/jceni.1000259

Citation: Claudiu D (2024) B-Cell Dysregulation in Neuroinflammatory Diseases: From Autoantibodies to Immunotherapy . J Clin Exp Neuroimmunol, 9: 259.

antigen presentation, and formation of ectopic lymphoid structures. The efficacy of B-cell depletion therapies in several of these conditions provides strong evidence for the pathogenic role of B cells [8,9]. While targeting CD20 has proven effective, ongoing research aims to identify more specific B-cell targets to improve therapeutic efficacy and minimize off-target effects. Understanding the specific B-cell subsets and their contributions to different neuroinflammatory disorders is crucial for developing personalized therapeutic strategies. Future research should also focus on elucidating the interactions between B cells and other immune cells within the CNS, as well as the role of environmental factors in modulating B-cell responses in these conditions.

Conclusion

B cells play a critical role in the pathogenesis of various neuroinflammatory disorders, contributing to neuroinflammation through diverse mechanisms. Targeting B cells has proven to be an effective therapeutic strategy in several of these conditions. Further research is needed to fully understand the complex roles of different B-cell subsets and their interactions with other immune cells in the CNS, paving the way for the development of more targeted and effective therapies for these debilitating disorders.

References

 Heaton Rk, Clifford Db, Franklin Dr Jr, Woods Sp, Ake C, et al. (2010) Charter Group. Hiv-Associated Neurocognitive Disorders Persist in The Era of Potent Antiretroviral Therapy: Charter Study. Neurol 75:2087-2096

- Robertson Kr, Smurzynski M, Parsons Td, Wu K, Bosch Rj, et al. (2007) The Prevalence and Incidence of Neurocognitive Impairment In The Haart Era. Aids. 21:1915-1921.
- Tozzi V, Balestra P, Lorenzini P, Bellagamba R, Galgani S, et al. (2005) Prevalence and Risk Factors for Human Immunodeficiency Virus-Associated Neurocognitive Impairment, 1996 To 2002: Results from an Urban Observational Cohort. J Neurovirol 11:265-273.
- Purohit V, Rapaka R, Shurtleff D.(2011) Drugs of Abuse, Dopamine, and Hiv-Associated Neurocognitive Disorders/Hiv-Associated Dementia. Mol Neurobiol 44:102-110.
- Toggas Sm, Masliah E, Rockenstein Em, Rall Gf, Abraham Cr, et al. (1994) Central Nervous System Damage Produced by Expression of The Hiv-1 Coat Protein Gp120 in Transgenic Mice. Nature 367:188-193
- Jana A, Pahan K. (2004) Human Immunodeficiency Virus Type 1 Gp120 Induces Apoptosis in Human Primary Neurons Through Redox-Regulated Activation of Neutral Sphingomyelinase. J Neurosci 24:9531-9540.
- Zhang K, Rana F, Silva C, Ethier J, Wehrly K, Et Al.(2003) Human Immunodeficiency Virus Type 1 Envelope-Mediated Neuronal Death: Uncoupling of Viral Replication and Neurotoxicity. J Virol 77:6899-6912.
- Bachis A, Cruz Mi, Mocchetti I.(2010) M-Tropic Hiv Envelope Protein Gp120 Exhibits A Different Neuropathological Profile than T-Tropic Gp120 in Rat Striatum. Eur J Neurosci 32:570-578.
- 9. Hartley O, Klasse Pj, Sattentau Qj, Moore Jp.(2005) V3: Hiv's Switch-Hitter. Aids Res Hum Retrovir 21:171-189.

Page 2 of 2