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Abstract
Tri-o-cresyl phosphate (ToCP), tri-p-cresyl phosphate (TpCP), and tri-m-cresyl phosphate (TmCP) could all be 

completely broken down in 36, 24 h, and 12 h, respectively, by the novel microbial consortium ZY1. Intracellular 
enzymes were primarily responsible for the biodegradation of TCPs. ZY1 could also break down tris (2-chloroethyl) 
phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCPP), bisphenol-A bis (diphenyl phosphate) (BDP), triphenyl 
phosphate (TPHP), 2-ethylhexyl diphenyl phosphate (EHDPP), and bisphenol-A bis (diphenyl phosphate) (BDP). The 
TCPs decrease in both freshwater and seawater suggested that high salinity may inhibit ZY1's ability to degrade. The 
breakdown products found indicated that TCPs were primarily metabolized by hydroxylation and hydrolysis. According 
to sequencing analysis, TCP degradation.
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Introduction
According to sequencing analysis, the cooperation of 

sphingobacterium, variovorax, and flavobacterium was necessary for 
the degradation of TCPs. The degradation of TCPs may be facilitated 
by the cytochrome P450/NADPH-cytochrome P450 reductase and 
phosphatase, according to theories. Ultimately, based on the production 
of intracellular reactive oxygen species (ROS) and the apoptotic rate 
of A549 cells, the toxicity evaluation study discovered that the diester 
products' toxicity was lower than that of their parent compound. When 
considered collectively, these studies offered fresh perspectives on TCP 
bioremediation in real environments [1-3].

Methodology
To date, OPFRs have been eliminated by photocatalytic reduction 

and Fenton oxidation treatment. Microbial remediation, in contrast 
to these technologies, may offer a cost-effective and environmentally 
beneficial solution for the degradation of organic pollutants. In order 
to accomplish this, pure strains possessing the ability to degrade TCP 
were effectively isolated within the laboratory. According to Liu et al. 
(2019c), for instance, brevibacillus brevis was able to degrade 34.73%, 
78.28%, and 89.17% of 1 mg/L ToCP, TmCP, and TpCP, respectively, 
in just five days. According to Wang, sphingopyxis eliminated 85.5% of 
the 0.27 mmol TCPs following a 7-day incubation period. However, the 
use of pure strain in the actual environment for TCP elimination may 
not be successful because the successful remediation [4-6].

Because the cooperative metabolic activities of complex microbial 
populations are always necessary for successful remediation in 
real environments, the degradation efficiency was also limited by 
the weak adaptability of pure strains to unfavorable conditions. It 
was determined that microbial consortium degradation offered the 
clearest benefit in restoring the environment. As a result of the diverse 
depolymerization processes of organic compounds that the various 
microorganisms in the microbial consortium formed, the toxic 
pollutants would mineralize into harmless products. Simultaneously, 
complex microbial communities' inherent compositional stability and 
performance allowed them to adapt to environmental perturbations 
more effectively than monoculture did [7-9].

Little research has been done on TCP reduction with the microbial 
consortium to date, and the transformation mechanism is unknown. 

Furthermore, while earlier research primarily concentrated on the 
toxicity of TCPs, there has been evidence to suggest that the ecological 
risk posed by degradation intermediates may be greater than that 
of the parent compound. The debromination products of 2, 2′, 4, 
4′-tetrabromodiphenyl ether (BDE-47) were found by Tang to be 
more toxic than BDE-47 itself. Additionally, Chen proposed that TCP 
metabolites, particularly the hydroxylated metabolites, were more 
potent estrogen receptor antagonists than TCPs themselves, which 
may cause dysfunction of the testis structure. Thus, additional study 
of the degradation products' toxicity was required in order to improve 
understanding.

This work isolated the microbial consortium ZY1, which is able 
to degrade ToCP, TpCP, and TmCP. The crucial location of the 
degrading enzyme was established, and the three isomers' metabolic 
pathways were also suggested. Additionally, we investigated how 
the TCP treatment affected the microbial community and function 
genes. Evaluations of the primary degradation products' toxicity 
and the viability of bioaugmentation in freshwater and seawater 
using the microbial consortium ZY1 were conducted. Furthermore, 
ZY1's possible involvement in the degradation of other OPFRs was 
investigated [10].

Conclusion
Further clarification was provided regarding the role of extracellular 

and intracellular enzymes in the reduction of TCPs by the isolation 
of a novel microbial consortium ZY1, which possessed the ability to 
fully degrade three isomers. Two major pathways for TCP degradation 
have been proposed: hydrolysis and oxidative hydroxylation of TCPs. 
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According to sequencing analysis, key degradation enzymes were also 
predicted, and sphingobacterium, variovorax, and flavobacterium 
may be involved in the removal of TCPs. The experiment on toxicity 
assessment.
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