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Description
The need for new antibiotics and new approaches to treating

bacterial infection is critical due to the rise in antimicrobial resistance
(AMR) [1].Traditional antibiotics target essential physiological
processes and do not discriminate between pathogenic bacteria and
the commensal microbiome. This approach disrupts normal microbial
flora and places tremendous selective pressure on susceptible bacteria.
Thus, resistance can arise either within the target population or the
microbiome. Mutations in either population can subsequently spread
through horizontal gene transfer [2]. A promising approach to combat
AMR is the use of Anti-virulence therapies (AVTs).These compounds
specifically target virulence factors and do not affect the normal
microbial flora. The rationale behind AVTs is that they prevent
selective pressure on non-pathogenic microbial flora. Thus, resistance
will likely arise more slowly or not at all [3,4].This notion is predicated
on the fact that many virulence targets are specifically upregulated in
the host or are only essential in the host environment. In the absence of
a virulence target, AVTs would exert no evolutionary pressure to select
for resistance. Although AVTs diminish virulence, resistant mutants
have already been isolated in the lab [5]. Here we discuss the need to
predict evolutionarily favorable mutations and a strategy to primitively
generate rationally designed compounds effective against these
mutations

Targets of AVTs include: Structural components (i.e. adhesins,
secretion systems), regulatory proteins of virulence-specific regulons
and signaling molecules [6]. An important example of resistance to
AVTs is represented by quorum sensing (QS) inhibitors. QS is an
important virulence mechanism in the opportunistic pathogen,
Pseudomonas aeruginosa [7].This model system has provided valuable
evidence of evolution in response to AVTs [8].For instance, QS
regulated virulence is diminished in the presence of furanone
derivatives, which inhibit the transcriptional regulator, LasR [9].
Furthermore, these compounds significantly reduced virulence-
associated phenotypes in vitroas well as bacterial colonization in vivo
[9]. However, strains resistant to QS inhibition have been isolated with
mutations in both lasR and its co-regulator rhlR [10,11].These data
suggest that we should anticipate rapid evolution of AVT targets
leading to resistant strains after clinical application.

Another well-studied target of antivirulence compounds are type
three secretion systems (TTSSs) [12,13].The TTSS is a broadly utilized
virulence mechanism of enteric pathogens including species of
Yersinia, Salmonella, Shigella and Escherichia. This needle-like
secretion system allows for the delivery of toxins into host cell to
modulate cell function for the benefit of the pathogen. The TTSS
makes an attractive target as it is the primary virulence mechanism of
many Grams negative pathogens [14].Additionally, its conserved
nature allows some AVTs to act across multiple species.For instance, 5-

cyano-6-(4-methylbenzylthio) picolinic acid and 1,3-bis[3-(4,5-
dihydro-1H-imidazol-2-yl)phenyl]urea inhibit secretion of toxins from
both Y.pestisas well as Enteropathogenic E. coli (EPEC) [15].

Yersinia spp has been particularly well studied in regard to the TTSS
and AVTs. Small molecule inhibitors that have been identified in
Yersinia include: the ATPase that powers toxin translocation(YscN)
[16],the transcriptional regulator of the TTSS and toxins (LcrF) [17,18]
and the pore forming tip of the TTSS (YopD) [19].Although AMR has
not been reported to date, we can surmise from work in P. aeruginosa
that it will.To prepare for this eventuality we can make use of the
crystal structures of AVT targets, which have been completed for LasR
[20] and InvC, (YscN homologue from Salmonella).This structural
data will allow for in silico modeling of the inhibitors with their target.
Specifically, we can select for resistant mutants in the lab and model
drug-target interactions in silico allowing for iterative design of new
compounds.

A likely reason we have not seen more reports of strains resistant
to is that AVTs is that they were developed outside the context of and
active immune response. However, in vivo, AVTs would disarmed
pathogens of their virulence factors. Pathogens will then be subjected
to a powerful immune response that will select for resistance. Our
group is pursuing a strategy for the directed evolution of Yersinia by
passaging them in the presence of macrophages and/or TTSS
inhibitors. Upon elucidating the specific mutations elicited by different
AVTs, the starting compounds can be predictively remodeled. Indeed,
such a platform for this modeling has described for LasRin P.
aeruginosa [21].

Currently, AVTs represent 8% of the pre-clinical pipeline of 407
antibiotic development projects [22].The difficulty of establishing
clinical trials decreases the likelihood that many of these compounds
will be clinically available. Furthermore, it is inevitable that resistance
to these compounds will arise as demonstrated by lasR mutations in
Pseudomonas. Thus, we must not wait for potential AVTs to become
quickly obsolete, but proactively determine the most likely mutations
to occur by combining ex vivo experimentation with in silico drug
modeling.

Antivirulence therapies offer an exciting approach for treating
infectious disease, which promises to reduce the spread of resistance
via horizontal gene transfer. Furthermore, we can anticipate that in the
context of an actual infection, resistance will arise just as it has to
traditional antibiotics. However, using sequence from laboratory
derived mutations, we can anticipate the most evolutionarily favored
mutations. This will allow in silico modeling to preemptively modify
small inhibitory molecules to interact with newly defined virulence
targets. This work will all us to determine if can we supplement AVTs
with second or third generation derivatives that target not only wild
type virulence targets, but also their subsequent mutant form(s). While
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the development of “ evolution proof ”  therapeutics is implausible,
coupling prudent antibiotic use with AVT and AVT derivatives will
extend the usefulness of our emerging cohort of these important
antimicrobial compounds.
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