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Introduction
Idling refers to the vehicle operation, when a vehicle’s engine is 

running, but not in motion [1,2]. Though usually individual idling 
episode is very small in a driving trip, the cumulative impacts of idling 
are enormous. In the United States, more than 6 billion gallons of 
fuel yearly were spent on the avoidable idling operations [3], leading 
to a total of 5, 988.66 billion ton of carbon dioxide (CO2) emissions. 
What’s more, the gigantic byproducts of nitrogen oxides (NOx), carbon 
monoxide (CO), and hydrocarbon (HC) are toxic to environment and 
humans [4]. An insight into the idling emission pattern is essential to 
prevent the unnecessary toxic exhaust from emitting. 

The idling can be discretionary or non-discretionary. Discretionary 
idling occurs only when the driver chooses to stop and idle, while 
non-discretionary idling takes place during normal driving due to 
the restrictions of traffic signals, signs and congestions [5]. The non-
discretionary idling lasts normally shorter under a hot start [6], 
which is often operated during congestion. Many strategies have been 
implemented to release congestion related non-discretionary idling 
emissions, such as optimized signal control and eco-driving [7] and 
improved configuration of drive-through facilities [8]. Though many 
previous studies have been conducted to explore the idling emission 
patterns [9,10], most of them usually focus on the emission impacts of 
a vehicle itself, such as vehicle type/size, age and accumulated mileage, 
fuel type, and vehicle maintenance conditions, and ambient temperature 
[11]. The exhaust emissions are mostly statically monitored. In fact, most 
idling modes are followed with a series of vehicle operations, which 
transition could result in different engine activities, such as revolutions 
per min (rpm), intake air temperature (IAT), manifold absolute pressure 
(MAP), from those monitored during the lab idling tests. 

Besides, idling emission estimation is usually embedded into 
the exhaust emissions attributed by other vehicle operations, such as 
acceleration and braking, during modeling. The most common used model 

is the Motor Vehicle Emission simulator (MOVES), which is developed 
by Environmental Protection Agency (EPA). Other emission models 
include the Emission Factors (EMFAC) model developed by California Air 
Resources Board (CARB), the international vehicle Emission (IVE) model 
in most developing countries, and the Computer Program to calculate 
Emissions from Road Transport (COPERT) model developed by European 
Commission Environmental Protection Agency [2]. These macroscopic 
models statistically use some types of microscopic emission information 
based on standard emission measurement. For example, MOVES estimates 
idling emissions by emission rates that are obtained by drive cycles [2,11]. 
No doubt that these emission rates can simplify the exhaust emission 
estimation at a regional scale. However, such estimates fail to demonstrate 
the exhaust emission patterns during an idling mode. Besides, the statistical 
models are based on a number of assumptions or often end up over fitting. 

Comparably, the recently developed machine learning techniques, 
such as K-Nearest Neighbor (KNN) model, Neural Network, Boosted 
and Bagged Decision Trees (BBDT), can possibly provide more reliable, 
repeatable decisions and results. The machine learning techniques learn 
from measured computations without rules-based programming and 
conducts prediction on the fly. The most advantage is that there is no 
any continuity of boundary in the machine learning algorithm and the 
distribution of dependent or independent variables do not need to be 
specified [12]. This research attempts to identify a machine learning 

*Corresponding author: Qing Li, Innovative Transportation Research Institute, 
Texas Southern University, 3100 Cleburne Street, Houston, 77004, Texas, USA, 
Tel: 713-313-7532; E-mail: liq@tsu.edu 

Received  December 07, 2016; Accepted December 15, 2016; Published 
December 22, 2016

Citation: Li Q, Qiao F, Yu L (2016) A Machine Learning Approach for Light-Duty 
Vehicle Idling Emission Estimation Based on Real Driving and Environmental 
Information. Environ Pollut Climate Change 1: 106. doi: 10.4172/2573-
458X.1000106  

Copyright: © 2016 Li Q, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
The conventional models for idling emission estimation are mainly based on ambient temperature and the status 

of vehicle itself, such as vehicle type/size, age and accumulated mileage and fuel type. Instant vehicle activity 
information is seldom taken into account. In this research, a machine learning approach is proposed to dynamically 
estimate vehicle emission rates while idling, based on real-world driving tests on more than 1,600 km highways in 
the State of Texas in the USA. One driver drove a dedicated light-duty gasoline vehicle on various types of roads, 
including interstate freeways, farm roads, state highways, and arterial road. During each episode of idling, rates of 
vehicle exhaust emissions, including carbon dioxide (CO2), carbon monoxide (CO), hydrocarbon (HC) and nitrogen 
oxides (NOx) were measured by a Portable Emission Measurement System (PEMS). Meanwhile, the real-time 
vehicle engine information of the test vehicle, such as revolutions per min, intake air temperature, and environmental 
information (e.g. ambient temperature), were collected through the On-board Diagnosis II port. Five machine learning 
algorithms were applied to build up idling emission models to illustrate the nature of emission patterns. Results show 
that Boosted and Bagged Decision Trees (BBDT) based idling emission model was identified as the best-fit ones for 
dynamic idling emissions with better prediction performance.
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algorithm for training a best-fit idling emission model, based on field 
driving tests and real-time environmental information. The best-fit 
model can illustrate the nature of exhaust emission patterns during 
idling, and provides reliable and highly accurate estimation results. 

Methodology 
Machine learning algorithms

Five machine learning algorithms were applied to build idling 
emission models, including KNN, Neural Network, BBDT, CHAID 
and Support Vector Machine (SVM) and were screened by comparing 
their relative errors. The relative error is the ratio of the sum of squared 
errors for the dependent variable to the sum of squared errors for the 
null model. A smaller relative error indicates a higher accuracy of 
prediction. The first two built-up models with lower relative errors 
were further analyzed, in terms of Root Mean Square Error (RMSE) 
and the correlation coefficients (R) of the fitted regression lines for each 
emission index. The better-fit model was identified by a lower relative 
error, a lower RMSE, and a higher absolute R.

KNN model: As an instance-based learning (i.e., lazy learning), 
the KNN algorithm is one of the simplest machine learning algorithms. 
KNN is a model that predicts the value of an output variable based on 
the values of its nearest neighbors [13]. More specifically, it is a method 
to recognize the pattern of data without requiring an exact match to 
any stored patterns or cases. By this mode, similar cases are closely 
gathered to each other. The distance between cases is the measure of 
similarity. There will be many neighbors for each case. The best number 
of neighbors is called k and specified by a crossed check for error log 
(el) presented in Equation (1).
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where,
jy =the measured output



jy =the estimated output, which is an average of weighted k nearest 
neighbors 

j=the jth nearest neighbor

BBDT model: BBDT model is a result of regression trees or 
classification trees and bagging, which is an ensemble learning method. 
Multiple decision trees are generated and bagged into an ensemble. For 
the idling emission estimations, individual tree grows deeply, based 
on regression trees. The bagging is a training process of resampled 
data. For each resampling, the unique observations are divided into 
two groups: bootstrap samples for training and out of bag samples for 
validation. The predictive power of the trained ensemble is indicated 
by the average errors from the out-of-bag samples. The prediction 
algorithm is expressed as Equation (2) [14].
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where: 
^
y =the prediction from tree t in the ensemble 

S=the set of indices of selected trees that comprise the prediction

at=the weight of tree t

( )∈I t S =1 if t is the set S, otherwise 0

Neural network: The artificial Neural Networks are based on 
simple mathematical models of the brain. The Levenberg-Marquardt 

algorithm is one of the typical methods to train the networks (structure, 
weights and bias) using the multilayer perception procedure [15,16]. 
The training process stops automatically when generalization no longer 
improve, indicating by an increase in the mean square error of the 
validation samples. In this research, a structure of 1 hidden layer and 10 
neurons was determined.

SVM model: SVM models are supervised learning models, the 
algorithms of which analyze data for classification and regression 
[17]. In the idling emission case, SVM maps emission data to a high-
dimensional feature space for classification, regardless of whether the 
data are linearly separable. Once the boundary between categories is 
found, the data are transformed by the mathematical function of kernel. 
After the transformation, the boundary can be defined by a hyperplane. 
The response of new data can be predicted by classifying them into 
categories based on their features [18]. 

CHAID model: CHAID stands for CHi-squared Automatic 
Interaction Detection, and is a type of decision tree technique, which 
can be used for prediction as well as classification [19]. The optimal 
splits are identified by significance testing of chi-square independence. 
The CHAID algorithm consists of three steps: merging the pairs of 
categories showing the least significant difference, splitting for deep 
growing, and stopping when all categories differ at the specified testing 
level. A tree keeps growing by repeating these three steps at each node 
starting from the root node [20].

Accuracy estimation of predicted responses

The accuracies of the five machine learning based idling emission 
models are compared by Root-Mean-Square Error (RMSE) and 
Pearson product-moment correlation coefficient R. The RMSE is 
commonly used as a measure of the difference between observed values 
and predicted values by a model, which is expressed in Equation (3).
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Where,

Xobs, i=the ith observed value

Xmodel, i=the modeled value at the ith data prediction

On the other hand, the fitting level of the predicted values to the 
observed values is measured by the R value, which is obtained by 
Equation (4)
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The idling emission model that is able to provide predicted 
responses with the lowest RMSE and the absolutely higher R value is 
identified as the best-fit model. 

Test plan and data collection 

The non-discretionary idling emission pattern is addressed in 
this study, which is produced by temporal idles for traffic signals and 
congestion blockages. The vehicle engine in this case can be regarded 
as already being hot for sufficiently longer time. The structure and 
parameters of the model would be calibrated from input-output data 
pairs, which were obtained from on-road driving tests. 
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Figure 1a illustrates the dedicated light-duty test vehicle, which is 
a 2004 Subaru Forester with four cylinders and 2.5 liters displacement, 
auto transmission. Its vehicle weight was 3,100 lb; the test weight was 
3,500 lb, with 165 horse power at 5,699 rpm and a torque of 225 Nm at 
4,000 rpm. The fuel type is gas and the mileage at start of test was 16,496 
km (10,250 miles). Figure 1b is the PEMS placed on the back seat of the 
test vehicle. A plastic tube from the PEMS is connected to the tailpipe of 
the vehicle to suck in continuous exhaust emissions for measurement. 
A global positioning system (GPS) was placed on top of the vehicle to 
record the instant geolocation information. The sampling rate of the 
PEMS as well as GPS is 1 Hz (once per sec). 

The test vehicle was employed to drive through approximately 1,600 
km highways with different types of roads in the State of Texas, USA, 
including interstate freeways, farm roads, state highways, and arterial 
roads. The specific idling measurements on each highway are listed in 
Table 1. 

Table 1 shows that a total of P34H14M01S (i.e., a period of 34 h 14 
min and 1 s) driving duration on these highways, while the total 221 
episodes of idles lasted for P02H23M56S with an average of 39.07 s for 
each idle. The test sites cover a geologically wider range in the State of 
Texas. 

The vehicle activity and engine information were recorded by 
connecting the PEMS with an on-board diagnostic (OBD) II port of 
the test vehicle, during each idling period for congestion or traffic 
controls, such as traffic signals or stop signs. The collected information 
combined with each idling duration serves as input variables, including 

revolutions per min (rpm), Intake Air Temperature (IAT), Manifold 
Absolute Pressure (MAP), Ambient Air Temperature (AAT), and Idling 
Duration (ID). Meanwhile, the PEMS was used to measure real-time 
exhaust emission rates, including CO, CO2, NOx and HC, which are the 
output variables of modeling.

Figure 2 shows a screenshot of the PEMS records at a sampling 
frequency of 1 Hz. Column A is the recording time, columns B-E are 
part of the OBD II information that were flew into the PEMS, column 
F indicates the source gas analyzer used to measure emissions (from 
gas analyzer 1 or 2 or both), columns G to K are measured emissions 
and fuel consumption, column L is the Coordinated Universal Time 
(UTC), columns O-Q are GPS information, and column R is the real-
time driving speed from OBD II.

The total input-output data pairs were divided into three parts for 
training, validation, and testing. Seventy percent of data pairs were trained 
by the five algorithms. During the training process, the classification, 
network and regression, are adjusted according to its errors. Another 15% 
of the data pairs were used to measure generalization as validation samples 
and to halt training when the generalization stops improving. The last 15% 
of the data pairs serves as testing samples, which do not have effect on 
training and provide an independent measure of modeling performance 
during and after training. 

Results and Discussion
Comparison of relative errors among models

A total of 8,637 data pairs were collected during the idling modes in 

A B

Figure 1: a) The test vehicle b) PEMS placed inside the test vehicle.

City Highway Date Number of Idling Total Test Hours Total Idle Duration

Austin TX-183 (between Loop 1 
and 45) 09/24/2015 21 P04H04M50S P03M41S

El Paso Alameda Ave. 04/15/2015 33 P06H43M25S P32M13S
El Paso I-10 04/16/2015 38 P03H00M52S P03M40S
Angleton FM 523 06/11/2015 18 P07H22M00S P18M18S
League City I-45 06/12/2015 51 P02H28M37S P08M51S
Magnolia FM1486 01/27/2015 22 P04H32M35S P37M05S
Arcola FM521 06/05/2015 18 P02H38M25S P29M49S
Hitchcock I-45 06/10/2015 20 P03H23M17S P10M19S
Total 221 P34H14M01S P02H23M56S

Table 1: The description of test sites.
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the real driving tests, which were all recorded at hot engine status. Five 
machine learning based idling emission models were developed. The 
relative errors for each emission index are listed in Table 2. 

In Table 2, the relative errors of the four emission indexes by KNN 
are relatively closer to the ones by BBDT, ranged from 1% (for CO2 
by BBDT) to 15% (for CO by KNN). These two algorithms perform 
apparently smaller relative errors than Neural Network, CHAID and 
SVM models. Thus, the KNN and BBDT based idling emission models 
were selected for further analyses in the next section. 

Besides, it is worth noting that except the CHAID algorithm, 
other four algorithms are able to predict the CO2 emissions with 
smaller errors, whereas the five algorithms also provide CO and NOx 
estimations with comparably higher relative errors. This implies that 
the emission patterns of CO and NOx could be different from CO2 and 
HC. 

KNN modeling results

Figure 3 illustrates the fitted regression lines between the observed 
and estimated emissions by KNN models from the validation tests. 
The greater absolute value of R indicates higher correlation between 
the estimated emissions and the observed emissions. Figures 3a and 3c 
shows that the estimated CO2 and HC emissions are highly correlated to 
their corresponding observed values with the R value of 0.94 and 0.85, 
respectively. The R of 0.58 for NOx could be constrainedly considered 
as correlated relationship between the estimated and observed values, 
whereas the R of 0.33 for the CO tells that their relationship is relatively 
week. Similar fitting results are shown in Figure 4 for the testing phase, 
in which the correlation coefficients for the CO, HC and NOx, decline 
slightly to 0.17, 0.78 and 0.53, respectively. 

BBDT modeling results

Figure 5 shows the fitted regressions lines between the observed 
and estimated emission rates by the BBDT algorithm in the validation 
tests. Like the KNN based emission models, the estimated CO2 and HC 
emission values by the BBDT highly correlate to the corresponding 

observed emission values with the R value of 0.98 and 0.91, respectively. 
Furthermore, the CO and NOx estimations by the BBDT algorithm 
perform overall higher correlation relationship with the observed 
values than by the KNN algorithm for the R values of 0.49 and 0.52, 
respectively. 

In the testing phase shown in Figure 6, though there is a subtle 
decrease in R for the NOx emissions with 0.44, the R value for the CO 
contrarily increase to 0.59. As a whole, the exhaust emission values 
estimated by the BBDT algorithm are more correlative to the observed 
emission values than the estimated emission values by the KNN 
algorithm. 

Comparison of RMSE between KNN and BBDT based models

Table 3 depicts the RMSEs of the validation and testing results 
for the four emission indexes. General speaking, there are subtle 
differences in the RMSEs between the validation and testing results 
by the KNN and BBDT algorithms, respectively, which means the 
two built-up idling emission models are able to provide reliable 
estimated results. 

Figure 2: Screenshot of the recorded data from PEMS for a test.

Algorithm CO2 CO HC NOx

KNN 2% 15% 5% 11%
BBDT 1% 10% 3% 8%
Neural Network 3% 23% 7% 16%
CHAID 50% 75% 17% 73%
SVM 2% 67% 33% 99%

Table 2: The relative errors of the five machine learning based idling emission 
models.

Algorithm Phase CO2 (g/s) CO (mg/s) HC (mg/s) NOx (mg/s)

KNN
Validation 0.19 7.47 0.29 1.95

Testing 0.21 9.73 0.35 2.24

BBDT
Validation 0.10 6.46 0.22 1.82

Testing 0.08 6.24 0.19 2.56

Table 3: RMSE of validation and testing results by KNN and BBDT based idling 
emission models.
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Figure 3: Fitted regression lines for validation phase by KNN idling emission model.

0 1 2 3 4 5 6 7 8

Observed CO2 Emissions (g/s)
(a) CO2 testing results

0

1

2

3

4

5

6

7

8

E
st

im
at

ed
 C

O
2 E

m
is

si
on

s 
(g

/s
)

051001050

Observed CO Emissions (mg/s)
(b) CO testing results

0

20

40

60

80

100

120

E
st

im
at

ed
 C

O
 E

m
is

si
on

s 
(m

g/
s)

0 0.5 1 1.5 2 2.5 3 3.5 4

Observed HC Emissions (mg/s)
(c) HC testing results

0

0.5

1

1.5

2

2.5

3

3.5

E
st

im
at

ed
 H

C
 E

m
is

si
on

s 
(m

g/
s)

0 5 10 15 20 25 30 35 40

Observed NOx Emissions (mg/s)
(d) NOx testing results

0

5

10

15

20

25

E
st

im
at

ed
 N

O
x E

m
is

si
on

s 
(m

g/
s)

R = 0.93

R = 0.17

R = 0.78
R = 0.53

Figure 4: Fitted regression for testing phase by KNN based idling emission model.
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Figure 5: Fitted regression for validation phase by BBDT based idling emission model.
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Compared with the RMSEs by the two algorithms for each emission 
index at the two phases, the RMSEs by the KNN algorithm for the CO2, 
CO, and HC emissions are slightly greater than those by the BBDT 
algorithm. The NOx emission estimations by the two algorithms are 
similar to each other. This implies that the BBDT based idling emission 
model performs better prediction performance. Therefore, the BBDT 
emission model was identified as the best-fit models among the five 
developed machine learning emission models for its lower relative 
errors, higher absolute R values, and lower RMSEs. Besides, the average 
idling emission rates estimated by the best-fit model, the BBDT based 
emission model, were compared with the observed values measured by 
PEMS and the estimated values by MOVES for a light-duty gasoline 
vehicle. Table 4 shows the comparison results. 

Note: N/A=the emission rate is not available from source [11]

In Table 4, the MOVES estimated values were the average emissions 
of all light-duty vehicles. It is obvious that, the BBDT estimated emission 
rates are very close to the observed ones, whereas both the observed 
and the estimated emission rates are quite different from the MOVES 
estimations for average light-duty vehicles. In other words, the built-up 
BBDT based idling emission model presents better predictive power for 
this specific test vehicle.

Conclusion
Field vehicle idling emission tests were conducted in several 

different cities in the State of Texas. Vehicle activity information, 
engine information, and real-time exhaust emissions during each 
idling period were recorded and analyzed to characterize the pattern 
for modeling. A total of five machine learning based idling emission 
models were developed. Among the five models, the BBDT and KKN 
based idling emission models presented better predictions with lower 
relative errors, ranged from 1% for CO2 to 15% for CO. The prediction 
performance of the two models was compared by their RMSEs for 
each emission index. The RMSEs by the BBDT based idling emission 
model for the CO2, CO and HC exhaust emissions at the validation 
phase as well testing phase, were overall smaller than those by the 
KKN based emission models. Therefore, the BBDT based idling 
emission model was identified as the best-fit model. Besides, the 
estimated emission rates by the best-fit model were very close to the 
observed emission rates by PEMS. 

The BBDT built-up model can accurately and dynamically estimate 
vehicle idling emissions. Such a model can be easily embedded into 
a smartphone or tablet via a suitably developed application, so as to 
promptly display vehicle idle emissions while being halted at red lights 
or in a queue of congestions.
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