
OMICS InternationalResearch Article

Environment Pollution and 
Climate ChangeEn

vi
ro

nm
en

t P
ollution and Clim

ate Change

Yao et al., Environ Pollut Climate Change 2017, 1:2

Volume 1 • Issue 2 • 1000111Environ Pollut Climate Change, an open access journal 

Keywords: Household travel; GHG emissions; Spatial models

Introduction
The United States Environmental Protection Agency (USEPA) 

reported that the historical increase of CO2 emissions from the 
transportation end user sector is largely attributable to the increased 
and imbalanced demand for land use and travel activities [1]. The 
current state of the practice for estimating GHG emission relies on 
the integration of two isolated modeling processes: travel demand 
forecasting and emission estimation. The procedure employs an ad-hoc 
approach using average link-based speed and traffic volume from travel 
demand model as transportation activities related inputs for the MOVES 
(Motor Vehicle Emission Simulator) model [2-4] Climate change, land 
use and socioeconomic development are principal variables that define 
the need and scope of adaptive engineering and management to sustain 
infrastructure development. It is in the Federal (e.g. U.S. EPA) and state 
governments’ (e.g. California Air Resources Board) best interests to 
investigate research questions, such as, are the changes tangible? What 
are the actionable sciences for decision-making? What adaptation 
changes can be made in the planning horizon? Are there any tools, 
models available to test those adaptive changes? 

From the emission modeling’ perspective, accurate and detailed 
traffic operational activity inputs to MOVES model are crucial to 
maximizing its capability to accurately reflect the greenhouse gas 
emission associated with travel. Previous research [5-9] has proven that 
on-road traffic related emission varies with traffic operating conditions 
(i.e., speed, acceleration or deceleration). Recent studies [6,7,10,11] 
indicate potential deficiencies in converting travel demand outputs into 
the emission model inputs. Emission models often rely on traditional 
travel demand models for vehicle activity input, but traditional travel 
demand models are mostly calibrated and validated using aggregated 
total traffic data [12]. Therefore, the hourly emission estimates 
may not be accurate because hourly VMT and speed variations are 
underrepresented as well as aggregated inputs being used in the 

emission models [12,13]. In addition, real-world traffic data, especially 
location-based trip generations are spatial in its nature. Therefore, it 
contains unknown effects due to its spatial correlation [14,15]. Figure 
1 illustrates the traditional link-based “bottom-up” (left) approach in 
comparison to the proposed “top-down” (right) approach in estimating 
the GHG emissions in Hamilton County, Ohio. The link-based “bottom-
up” approach clearly mapped out the interstate freeway network since 
the interstates are heavily loaded with traffic. It actually accounts 
for all the emissions that are emitted on the roadway network of the 
county but does not provide a measurement of the source of emissions. 
Adaptation planning to climate change impacts requires data-driven, 
location-based analysis capability to estimate spatial distribution 
of travel GHG emission contributing sources due to transportation 
activities. Therefore, household GHG emission generation modeling is 
viewed as a pressing need to provide data and location-driven decision 
support to addressing the aforementioned research questions and 
analysis capabilities. However, the challenge remains in the theoretical 
representation of sensitive interactions between spatial-dependent 
land use and traffic activities as well as providing location-based GHG 
emission information for decision makers. 

Limited by the aggregated modeling assumptions and insufficient 
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Abstract
Household travel related Greenhouse Gas (GHG) emissions have been identified as one of the major 

contributors to greenhouse gas emissions. Many studies have suggested that household trips and their associated 
GHG footprints are pertinent in great part to land use type and socioeconomic of the household. The current practice 
of GHGs emission laws and regulations recommend using outputs from travel demand model for GHG and other 
regulated emission analysis. Conventional travel demand forecasting models are aimed at conducting a macroscopic 
simulation analysis at an area or regional level of the roadway network but it is unable to generate traffic flow 
operational data at a microscopic level such as speed, acceleration or deceleration at a fine spatiotemporal scale. 
On the other hand, the household travel GHG emissions, similar to the household location itself, are spatially and 
temporally dependent. The spatial factors’ role in the modeling of the household travel GHG footprint is unclear. To 
address the above gaps, this research proposes a robust household travel GHG quantification method with spatial 
information considered. By utilizing the greater Cincinnati GPS household travel survey data, household travel is 
accurately mapped to its origin and linked to the household’s socio-economics and demographic characteristics. 
The regional traffic analysis zone-based GHG emissions generated from the sampled households are, therefore, 
spatially modeled by using spatial regression models that originated from econometrics. The results showed that the 
Spatial Durbin Error model fits the data better comparing to other candidate models. 
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data support, it is difficult for planners to connect land use and 
household travel associated GHG emissions. Especially, there is 
almost impossible to make it traceable to the origin. Besides, since 
the household travel survey data analyses are cross-sectional studies 
and are spatially dependent, the effectiveness of incorporating spatial 
information into the research is not clear. A method of modeling 
household travel associated GHG emissions for accounting for spatial 
effects is needed. 

The goal of this research is to develop a spatial regression-based 
GHG emission modeling approach at the TAZ-level using GPS 
household travel survey data. The method is expected to enable 
analyzing the sensitive interactions among land use changes, household 
travel characteristics and GHG emissions by introducing spatial 
information for decision support. To fulfill the above goal, the following 
objectives are designated: 

• To identify the contribution variables for household travel GHG
emissions through statistical analysis using the high resolution
(second-by-second) GPS household travel survey

• To quantitatively reveal household travel GHG emissions at the
TAZ level. Illustrating household GHG emission’s socioeconomic 
and demographic characteristics with “ground-truth” traffic
activity data inputs;

• To utilize spatial information in GHG emission generation model 
bypassing the issues in Ordinary Least Square (OLS) regression-
based modeling assumptions

• To compare model goodness of fit using an information-based
measure of fit approach. The spatial cross-sectional regression
method is based upon previously extracted travel and GHG
emission characteristics of households as well as the spatial
contiguity among TAZs.

Summary of Existing Studies
Spatial typically refers to data containing time series observations 

over a type of spatial unit such as TAZs, zip codes, regions, countries, 
and states. It is generally recognized that panel data are more informative 
since they contain more variation and less collinearity among the 
variables. The use of panel data results in a greater availability of 
degrees of freedom, and hence increases efficiency in the estimation 
[16]. A large body of literature [17-19] has proven that incorporating 
spatial factors into integrated land use and transportation applications 
are applicable and yields reliable results [20-22]. The spatial and 
temporal correlation characteristics, which were originally introduced 
to the transportation field from econometrics, consider traffic activities, 
similar to its source generation, to be spatially correlated. Several 
recent studies at the University of Cincinnati [23-26] indicate that the 
spatial modeling approach is capable of achieving improved accuracy 
in both truck volume and Particulate Matter (PM 2.5) emission 

predictions. Hall et al. [27] identified that current land use land cover 
(LULC) models fail to incorporate and integrate spatial and temporal 
correlations in urban systems. To fill in the gap, they introduced the 
spatial linear and logistic regression model for panel data. They used 
the downtown population data for Austin, TX over multiple years to 
predict the population in 2020. A conclusion was drawn that spatial 
and temporal effects were shown to be highly statistically significant, 
suggesting that their recognition and formal inclusion in the models 
is likely to be of great value. Parent and LeSage [22] applied a spatial 
panel model with random effects to predict commuting times. They 
collected travel time to work, travel expenditures, traffic volume, lane 
miles and gas taxes to forecast the mean travel time to work for each 
state. The findings showed evidence of substantial of spatial spillovers 
and relatively weaker time dependence leading to much smaller time 
impacts accruing over future periods. A very recent article by Chakir 
and Le Gallo [28] investigates how the introduction of spatial effects 
and individual heterogeneity in an aggregated land-use share model 
affects the predictive accuracy of land use models. They considered 
agricultural, forest, urban and other land uses in their investigation. 
And one of the conclusions drawn is that controlling for both 
unobserved individual heterogeneity and spatial autocorrelation 
outperforms any other specification in which spatial autocorrelation 
and/or individual heterogeneity are ignored. Perugu et al. [29] applied 
spatial panel model for modeling truck factors and for improved PM2.5 
estimation in a regional roadway network. The proposed methodology 
enables plotting the spatiotemporal distribution of PM2.5 emissions in a 
subarea. They also reported that the methodology presented is scalable 
and transferable and holds technical promise in its application across 
different regions and pollutants.

In summary, a gap exists between the current practices of aggregated 
level of household travel GHG emission estimation and the data and 
spatial informed needs for adaptive planning. This proposed research 
is expected to fill in the gap by connecting zonal level socioeconomics 
with household travel GHG emissions using spatial regression and 
high-resolution GPS household travel survey data. This paper extends 
previous work on modeling household travel GHG emissions in three 
ways: 1) building the capability of estimating a TAZ level GHG emission 
generation model which is highly-desirable for adaptive planning, and 
2) developing a spatial regression based modeling approach which
added to currently practiced approach, and 3) testing the spatial
information’s role in modeling regional-level household travel GHG
emissions from large GPS-based household travel survey datasets.

Methodology
To fulfill the research gap identified, an integrated approach is 

proposed based on the Greater Cincinnati Household Travel Survey 
Data. The purpose of the methodology is to build up a linkage between 
household travels related GHG emissions and land use, socioeconomic, 
demographic, and spatial and temporal factors. Rapidly quantifying 
the GHG emissions through simulation of scenario-based land use and 
socioeconomic changes is an additional methodological goal. 

Figure 2 illustrates the heuristic framework of this research. 
The household travel data processing procedure extracts household 
travel characteristics base on the survey database. The purposes are 
threefold. First, to calculate the GHG emissions from the location 
specific household using the traditionally unavailable vehicle specific 
power (VSP) approach and the EPA approved MOVES model. Second, 
the extracted trip features based on household socioeconomic data 
will be used to update the trip rates table for the customized travel 

Figure 1: Link-based "bottom-up" approach versus traffic analysis zone (TAZ)-
based "top-down" approach.
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Figure 2: Heuristic framework of spatial regression model-based household travel GHG footprint modeling.

demand model. Module two, the contributing variables, is to produce 
contributing variables for spatial cross-sectional modeling including 
TAZ level, trip level attributes and spatial weights. The spatial cross-
sectional model will then be estimated. Third, the spatial model 
calibration module will provide justified land use patterns and 
associated household spatial distribution. The last part of this research 
is measuring the goodness of fit from OLS and the proposed spatial 
regression models.

Spatial autocorrelation of the variables 

The first law of geography according to Waldo Tobler is “Everything 
is related to everything else, but near things are more related than distant 
things.” [30]. This observation is embedded in the gravity model of trip 
distribution. It is also related to the law of demand, in that interactions 
between places are inversely proportional to the cost of travel, which is 
much like the probability of purchasing a good is inversely proportional 
to the cost. Spatial autocorrelation refers to the correlation of a variable 
with itself through space. If there is any systematic pattern in the spatial 
distribution of a variable, it is said to be spatially auto-correlated. OLS 
regressions assume that observations have been selected randomly. 
However, if the observations are spatially clustered to a certain 
degree, the estimates obtained from the correlation coefficient or OLS 
estimator will be biased and overly precise. The bias comes from areas 
with higher concentrations of events having a greater impact on the 
model estimation and will overestimate precision since events tends to 
be concentrated, and therefore, there are actually fewer independent 
observations than assumed. 

The most common measurement of spatial autocorrelation is 
the Moran’s autocorrelation coefficient (often denoted as I). It is an 
extension of Pearson-moment correlation coefficient to a univariate 
series [31,32]. Recall that Pearson’s correlation (denoted as ρ) between 
two variables x and y both of length n is:
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where x  and y  are the sample means of both variables. ρ 
measures whether, on average, ix  and iy  are associated. In the study 
of spatial patterns and processes, it is logically expected that close 
observations are more likely to be similar than those far apart. It is 
common to associate a weight with each pair ( ,i jx x ) that quantifies this 
expectation [33]. In its simplest form, these weights will be 1 for close 
neighbors, and 0 otherwise. The weights are sometimes referred to as a 
neighboring function with iiw  set to be 0. Moran’s I can be interpreted 
as the correlation between variable, x, and the “spatial lag” of x formed 
by averaging all the values of x for the neighboring areal units (i.e., 
polygons).

Moran’s autocorrelation coefficient I’s measured by:
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where ijw  is the weight between observation i and j , and 0S  is the 
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Moran’s I varies on a scale between [-1,1]. When the value is close 
to -1, it means high negative spatial autocorrelation; when the value is 
close to 0, it means no or minimal autocorrelation; when the value is 
close to 1, it suggest high positive spatial autocorrelation. 

The null hypothesis is that the Spatial Autocorrelation (Moran’s 
I) is that the data is completely spatial random. If the p-value is not
statistically significant, the null hypothesis cannot be rejected. If the
p-value is statistically significant, and the z-score is positive, the null
hypothesis is rejected. Table 1 shows Moran’s I and its statistical testing
results. Almost all the zonal attributes are determined to be spatially dependent.

Candidate spatial cross-sectional models

The general form of spatial cross-sectional model is below:

N

u

y wy al X wX u
u w

ρ β θ
λ ε

= + + + +
= +

where:

• WY denotes the endogenous interaction effects among the
dependent variables, 

• WX the exogenous interaction effects among the independent 
variables, and 

• Wu the interaction effects among the disturbance terms of
the different spatial units. 

• ρ is called the spatial autoregressive coefficient,

• λ the spatial autocorrelation coefficient, while

• θ represents a K × 1 vector of fixed but unknown parameters. 

Figure 3 shows the variations of spatial cross-sectional models with 
respect to assumptions in the error distribution in the above parameters. 
Since no predeterminations on the error term distribution can be made, 
this study tested all the below spatial cross-section models and the best 
model fits the data will be selected. 

Results
OLS regression analysis results

Table 2 shows the variables with their coefficient estimates. The R2 
(coefficient of determination) gives information about the goodness 
of fit of a model. In regression, the R2 is a statistical measure of how 
well the regression line approximates the real data points. An R2 of 1 
indicates that the regression line perfectly fits the data. The linear model 
has a R2 of 0.8002, which suggests that the model is a good fit. 

Figure 4 is a diagnose plot of the fitted linear model. The first two 
plots (Residual and Normal Q-Q plots) describe the distribution of 
the residuals. Ideally, those two plots should be roughly normal. The 
Outliers (TAZ No. 28, 198, 231 and 669) are shown on the two plots. 
The scale-location plot is similar to the residuals versus fitted values, but 
it uses the square root of the standardized residuals. A good fit linear 
model should show randomness in this plot. The last plot, residuals 
versus leverage, uses Cook’s distance to identify points which have more 
influence than other points. Generally these are points that are distant 
from other points in the data, either for the dependent variable or one 
or more independent variables. Each observation is represented as a 
line whose height is indicative of the value of Cook’s distance for that 
observation. There are no hard and fast rules for interpreting Cook’s 
distance, but large values (which will be labeled with their observation 
numbers) represent points, which may require further investigation.

K-fold cross-validation of the OLS model

K-fold cross validation  is one way to improve over the holdout
method. The data set is divided into k subsets, and the holdout method 
is repeated k times. Each time, one of the k subsets is used as the test set 
and the other k-1 subsets are put together to form a training set. Then 
the average error across all k trials is computed. The advantage of this 
method is that it matters less how the data gets divided. Every data point 
gets to be in a test set exactly once, and gets to be in a training set k-1 
times. The variance of the resulting estimate is reduced as k is increased. 
The disadvantage of this method is that the training algorithm has to 
be rerun from scratch k times, which means it takes k times as much 
computation to make an evaluation. A variant of this method is to 
randomly divide the data into a test and training set k different times. 
The advantage of doing this is that you can independently choose how 
large each test set is and how many trials you average over. A common 

Variables Description Moran's I P-Value Z-Sore Null hypothesis Spatially Dependent?
AT Area Type (CBD, Urban, Suburban, Rural) 0.8705 0.0000 37.2544 Reject Yes

AVGAUTO Average Auto Owned Per Household 0.7469 0.0000 29.0066 Reject Yes
ACRES TAZ Area in Acres 0.5974 0.0000 23.6038 Reject Yes
AVGWK Average Worker Per Household 0.5387 0.0000 22.9845 Reject Yes

EMP_DENSIT Employment Density 0.5041 0.0000 21.4985 Reject Yes
POP_DENSIT Population Density 0.4413 0.0000 18.5071 Reject Yes
TOTAL_AUTO Automobiles in Zone i 0.2795 0.0000 12.4357 Reject Yes

POP Population in Zone i 0.2693 0.0018 11.1823 Reject Yes
TOTAL_HH Total Households in Zone i 0.2688 0.0002 11.4844 Reject Yes

TOTAL_EMPL Total Employment in Zone i 0.2159 0.0000 10.0942 Reject Yes

EMP_M
The medium trip rate employment 

(Finance, Insurance, Real Estate, Public, 
Service, Wholesale Trade) in zone i

0.1874 0.0613 8.5768 Accept No

Avg_TRIPSP Trip Speed Average from Survey Data 0.1803 0.0050 7.4908 Accept No

Avg_CarbEM Trip Carbon Emission Average from 
Survey Data 0.1040 0.1040 5.2841 Accept No

Table 1: Moran's I and its spatial dependency check.
(Cutoff p-value 0.001)
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Figure 3: The relationships between spatial dependence models for cross-section data.

Variables Estimate Std. Error t p-value Pr(>|t|)
(Intercept) -1.61E-01 1.08E-01 -1.482 0.138675
ACRES 7.61E-05 4.48E-05 1.697 0.09016 .

AT 1.87E-01 4.71E-02 3.965 8.10E-05 ***
POP 4.57E-04 1.01E-04 4.535 6.80E-06 ***

TOTAL_HH 4.20E-04 2.17E-04 1.932 0.053826 .
TOTAL_EMPL -3.78E-05 2.48E-05 -1.52 0.128934
POP_DENSIT -2.13E-02 4.87E-03 -4.369 1.44E-05 ***
EMP_DENSIT 4.21E-04 2.84E-04 1.485 0.13811
TOTAL_AUTO 4.96E-04 1.04E-04 4.772 2.24E-06 ***

EMP_M 2.40E-01 7.07E-02 3.39 0.00074 ***
AVGWK 1.58E-01 8.50E-02 1.862 0.062971 .

AVGAUTO -1.94E-01 7.48E-02 -2.594 0.009688 **
Avg_CarbEM -7.54E+01 2.11E+01 -3.582 0.000365 ***
Avg_TRIPSP 1.99E-02 3.56E-03 5.589 3.32E-08 ***

(Residual standard error: 0.5001 on 679 degrees of freedom Multiple R-squared: 0.8002, Adjusted R-squared: 0.7964 F-statistic: 209.2 on 13 and 679 DF, p-value: <2.2e-16)

Table 2: OLS regression model and coefficients.

k number for model cross validation is 10. However, since there are 693 
TAZs in our dataset, k=9 is used to ensure each “fold” is equal.

Since the data are randomly assigned to a number of ‘folds’. Each 
fold is removed, in turn, while the remaining data is used to refit the 
regression model and the deleted observations are predicted. Table 3 
shows the residual sum of squares and mean square. Figure 5 is the 
validation plot showing the removed (folded) vs. fitted data. The 
validation plot shows a good validation since each removed vs. fitted 
data flows similar 45 degree line. Overall, the OLS model is validated 
and it is a good fit. 

Spatial regression analysis results

The spatial regression models are estimated using the maximum 
likelihood method. Table 4 shows the variable coefficients using the 
OLS, SAR, SEM, SDM, SDEM, KPM, and MAM. The coefficients that 
are not spatially dependent (i.e., Avg_CarbEM, Avg_TRIPSP) are quite 
similar. And the spatially dependent variables have more variations in 
the coefficient. This is expected because each of the models has different 
assumptions and is of different forms as shown in Figure 3. 

Goodness of fit measures for candidate models

The goodness of fit measures in spatial regression models is slightly 
more complex due to the lack of standard measures such as R2. However, 
commonly used goodness of fit measures is the information-based 
measures. The information-based goodness of fit measures utilizes 
several model performance measures and rank based on the values. The 
model with the lowest rank is considered a better fit than others. Table 
5 shows the information based measures and their ranks for OLS, SAR, 
SEM, SDM, SDEM, KPM and MAM models. This ranking utilized AIC, 
Log Likelihood and Moran’s I on Residuals as measures. For all three 
criteria, smaller values are better. Therefore, the SDEM model has the 
lowest summation of ranks and it fits the data better. 

Discussion 
A spatial regression-based modeling framework was developed 

based on finding the minimal model residuals and multiple information-
based measures of fit. The goodness of fit measures in spatial regression 
models is slightly more complex due to the lack of standard measures 
such as the R2. However, a common goodness of fit measures is the 
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Figure 4: Diagnose plot for OLS regression model.

information-based measures. The information-based goodness of fit 
measures utilizes several model performance measures and ranks based 
on the values. The model with the lowest rank is considered a better fit 
than others. The information-based measures and their ranks for OLS, 
SAR, SEM, SDM, SDEM, KPM and MAM models are summarized and 
presented. 

OLS model has an R2 (coefficient of determination) of 0.8, which is 
a good fit. However, when examining the residuals on diagnosis plots, 
it was found that the residuals are still spatially correlated. This suggests 
that spatial models can fit the data better and reduce the residual spatial 
correlation. After performing spatial regressions, the information-
based measure of fit based on AIC, log likelihood and Moran’s I on 
residuals are compared and the best model fitting the given dataset is 
the Spatial Durbin Error Model. The SDEM has the lowest AIC and 
Moran’s I on residuals compared to other candidate models. 

This study has provided a proof of concept for the proposed 

methodology and solid foundation for the modeling land use changes, 
and GHG emission analysis. It has been proven that the proposed 
method has the capability to reveal the dynamic linkage between land 
use, transportation, and emissions. The findings from this research 
provide insights on how land-uses planning alternatives built on adopted 
policies and enforced development regulations correlate with travel 
patterns and their sequential GHG emissions. The level of specificity, 
such as the land use change and GHG emission analysis presented in 
this study enables more data and indicators to be developed. Such data 
and indicators can be incorporated into decision makers’ plans, policies 
and ultimately regulations and its possible integration with project level 
review processes.

Conclusion
While the results from this study offer specific recommendations 

as to which types of land use planning policy practices are most highly 
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Fold Residual Sum of Squares Residual Mean Square
1 21.20 0.28
2 17.30 0.22
3 21.50 0.28
4 11.50 0.15
5 11.00 0.14
6 24.80 0.32
7 26.60 0.34
8 22.70 0.30
9 23.20 0.30

Average 19.98 0.26

Table 3: The 9-fold cross validation residuals.

 

Figure 5: The 9-fold cross-validation results.

Coefficients OLS SAR SEM SDM SDEM KPM MAM
(Intercept) -1.61E-01 -1.38E-01 -1.61E-01 -6.37E-02 -1.61E-01 -1.42E-01 -3.17E-02
ACRES 7.61E-05 5.66E-05 7.68E-05 2.17E-04 7.68E-05 7.37E-05 2.41E-04

AT 1.87E-01 1.93E-01 1.87E-01 3.00E-01 1.87E-01 1.88E-01 3.11E-01
POP 4.57E-04 4.59E-04 4.57E-04 5.50E-04 4.57E-04 4.75E-04 5.77E-04

TOTAL_HH 4.20E-04 4.68E-04 4.20E-04 6.05E-04 4.20E-04 4.65E-04 6.33E-04
TOTAL_EMPL -3.78E-05 -4.22E-05 -3.78E-05 -5.08E-05 -3.78E-05 -4.19E-05 -4.96E-05
POP_DENSIT -2.13E-02 -2.18E-02 -2.13E-02 -2.55E-02 -2.13E-02 -2.21E-02 -2.68E-02
EMP_DENSIT 4.21E-04 3.78E-04 4.21E-04 3.75E-04 4.21E-04 3.72E-04 3.22E-04
TOTAL_AUTO 4.96E-04 4.78E-04 4.95E-04 2.56E-04 4.95E-04 4.56E-04 2.08E-04

EMP_M 2.40E-01 2.36E-01 2.40E-01 1.87E-01 2.40E-01 2.35E-01 1.83E-01
AVGWK 1.58E-01 1.70E-01 1.59E-01 1.91E-01 1.59E-01 1.74E-01 1.84E-01

AVGAUTO -1.94E-01 -1.62E-01 -1.94E-01 -8.03E-02 -1.94E-01 -1.65E-01 -6.22E-02
Avg_CarbEM -7.54E+01 -7.54E+01 -7.54E+01 -7.58E+01 -7.54E+01 -7.47E+01 -7.46E+01
Avg_TRIPSP 1.99E-02 2.02E-02 1.99E-02 1.98E-02 1.99E-02 1.99E-02 1.96E-0

(OLS: Ordinary Least Square; SAR: Spatial Autoregressive Model; SEM: Spatial Error Model; SDM: Spatial Durbin Model; SDEM: Spatial Durbin Error Model; KPM: Kelejian 
Prucha Model; MAM: Manski Model)

Table 4: Model coefficients comparison for OLS, SAR, SEM and SDM models.
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associated with a higher amount of VMT, GHG emissions, there 
are also some potential to reveal policy impacts that can be applied 
to integrated land use and transportation sustainability practices. 
The results of this research are expected to add to the existing body 
of knowledge to enable faster and easier methods of examining 
the impact of adaptive planning strategies on alleviating the effects 
of household travel GHG emissions. The spatial cross-sectional 
regression model is developed through the integration of actual and 
scenario based land use visioning and planning, demographical 
changes, transportation emission analysis, and computer forecasting 
and evaluation of future scenarios. This research makes it possible to 
assess the household travel GHG footprint and provides models, data 
for possible GHG emission mitigation through land use policies and 
changes. Although the results may be pertaining to the specific dataset 
but it helps transportation decision makers to better connect the land 
use development and its related household socioeconomics with their 
GHG emission characteristics. Particular, the household travel GHG 
emission quantification results made its contribution to the current 
body of knowledge on the following: (1) provides accurate GHG 
emission results by using the best available traffic activity data inputs 
(VSP distributions) for emission modeling; (2) provides connections 
between household socioeconomics and their travel GHG footprint. 
The research suggests important potential to provide solid grounds 
for analyzing, modeling of sustainable community strategies, adaptive 
planning policies, and many other policy-making applications.
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