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Abstract
DNA evidence is the forensic gold standard. However, the interpretation of this evidence can be challenging. 

Sophisticated mathematical computing can provide accurate and reliable interpretation of DNA mixtures that contain 
two or more individuals. But the reliability of human review of such data is less well established. 

This paper explores what happens when good DNA data is badly interpreted. The genotype is used as a unifying 
concept, with mixture evidence containing multiple genotypes. Highly informative computer interpretation of mixtures 
is compared with less quantitative human approximation. 

Seven cases are examined where, on the same data, human review gave appreciably different results than 
the computer’s more thorough assessment. These interpretation differences can affect criminal justice outcomes, 
suggesting that sophisticated computing is needed to help people interpret challenging DNA mixture evidence. 
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Introduction
Some may think that DNA evidence is always perfect. As the 

forensic gold standard, maybe DNA mistakes are never made. With all 
the information right in front of us, perhaps we can immediately know 
the correct answer just by looking at the data. This situation is largely 
true for pristine reference samples, with their very small human error 
rate of 1 locus in 2,000 [1]. However, much DNA evidence is mixed or 
low-level, and so presents interpretation challenges [2]. 

Last year, the Washington Post reported that a state was 
reevaluating their DNA evidence in 375 cases [3]. The issue was DNA 
mixtures, evidence that contains more than one person. That article 
quoted a crime lab director who said, “Mixture cases are their own little 
nightmare. It gets really tricky in a hurry”. The forensic DNA pioneer 
Dr. Peter Gill, of the former United Kingdom Forensic Science Service, 
has said, “If you show 10 colleagues a mixture, you will probably end up 
with 10 different answers” [4]. 

This paper explores when good DNA goes bad. We begin by 
describing the unifying genotype concept, and mixture evidence 
comprised of multiple genotypes. Highly informative computer 
interpretation of mixtures is then contrasted with less quantitative 
human approximation. We then examine DNA interpretation 
discrepancies in seven cases where both computer and human analyses 
were performed. We conclude that sophisticated computing is needed 
to help people interpret challenging DNA mixture evidence. 

Methods
Genotype

A human genome packages DNA into 23 pairs of chromosomes. 
We can unravel the genetic alphabet from a chromosome’s hundred 
million letters to zoom in to a small region of 100 to 500 letters. This 
genetic location, or “locus,” could describe meaningful information 
like a functional gene, or, alternatively, its DNA letters could code 
for something more random. There are about 100,000 Short Tandem 
Repeat (STR) loci scattered across the genome, providing highly 
variable “junk DNA” useful for identifying people. 

We generally inherit two DNA copies of an STR locus, one from 

our mother and one from our father. Each copy has a small word (say, 
4 or 5 DNA letters) that is repeated some number (say, 10 or 20) of 
times. A larger number means a longer DNA sentence. Across a human 
population, there are about 10 or 20 different values of these varying 
sentences, called “alleles”. 

The genetic type (or “genotype”) is the central concept in genetic 
identification [5]. At a locus, a person’s genotype is their two inherited 
alleles. Each locus provides about 100 potential pairings, which is 
useful in genetic identity, where we want to distinguish between 
different people. Examining a person’s genotype allele pair at 10 or 
20 different loci can provide quintillions of different possibilities. A 
person’s genotype is easy to measure in the molecular biology lab [6], 
and is relatively unique. 

Mixture

The diagram illustrates the components of DNA mixture data, and 
its underlying genotypes (Figure 1). At this D18S51 locus, there are 
three people in the mixture. The x-axis shows increasing allele size, 
while the y-axis shows increasing allele amount. The major contributor 
(blue) contributes most of the DNA (taller bars), and has a genotype 
with allele pair 13,14. The second person (green) contributes less DNA 
(about a third of the height of the major), with a 16,18 allele pair. The far 
smaller amount (orange) of a third contributor has a 17,20 genotype. 
This schematic shows the true state of the world–the genotypes of each 
contributor, and their relative amounts of DNA. 

Actual STR mixture data (Figure 2) can look very similar to the 
true genotype illustration. Again, the x-axis measures allele size, and 
the y-axis allele quantity. The tallest allele peaks 13,14 (blue) are from 
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the first contributor. The medium-sized peaks 16,18 (green) are from 
the second contributor. The shortest peaks 17,20 (orange) are from 
the third contributor. This is high quality DNA data that can be highly 
informative when properly interpreted. 

Human review

Unfortunately, such mixture data often goes largely unused in 
human review because it is not fully interpreted. Forensic protocols 
apply a “threshold” to the data that throws out quantitative information 
(Figure 3). Instead of using a mathematical model to explain the data, 
an analyst simply draws a line, whose height is set by their lab [7]. 
Below this threshold line, STR data is discarded. Above the threshold, 
peak heights are ignored and all alleles are treated as if they had the 
same DNA amount. 

When data are not used, information can be lost. Quantitative data 
interpretation in this example supports a match to a person having a 
16,18 genotype (green arrows). Yet once a threshold has been applied, 
human review would exclude this genotype as a contributor to the 
mixture. 

Science makes inferences (such as genotypes) from observations. 
Data should be a fixed starting point that is never modified [8]. But 
DNA mixture protocols for human review typically apply a threshold 
that changes the STR peak height data. Some labs now use two 
thresholds [9], but that does not address the main issue: data should be 
used, not discarded. 

Computer interpretation

Computer programs can conduct an objective and thorough 
examination of DNA mixture data. Cybergenetics TrueAllele® 
Casework is one such system, with validated reliability in sensitivity, 
specificity and reproducibility studies [10-12]. Originally developed 
over ten years ago, TrueAllele is now regularly used in criminal cases. 
TrueAllele mathematically models DNA mixture data, statistically 
examining virtually every possible solution. 

The illustration shows one such proposed genotype solution 
(Figure 4). The computer has proposed a first major contributor with 
genotype 13,14 (blue), a lesser contributor having allele pair 16,18 
(green), and a small amount of a 17,20 genotype contributor (orange). 
TrueAllele tries that genotype configuration, along with many others. 
Taller allele bars indicate that more DNA is present for a genotype. 
Small bars indicate a lesser contributor amount. 

The computer explores many possibilities. It proposes different 

Figure 1: DNA mixture genotypes. The data schematic shows DNA amount 
(y-axis) versus allele size (x-axis) at an STR locus. Each contributor is shown 
in a different color (blue, green, orange). The allele pair of each contributor 
genotype is indicated by size location (x-axis), while the relative genotype 
amount is indicated by bar height (y-axis).  

Figure 2: Good DNA evidence data. The electrophoretogram (EPG) data trace 
for this three contributor mixture shows one data peak for each allele. The 
x-axis gives allele size (in base pairs), while the y-axis measures peak heights 
on a relative fluorescence unit (RFU) scale. The allele pair for each genotype 
(blue, green, orange) has peaks with comparable heights. Each contributor 
corresponds to a genotype shown in Figure 1. 

Figure 3: Misinterpreted, data goes bad. A threshold (red line) of height 150 
RFU is applied to the quantitative STR locus data of Figure 2. This threshold 
renders the 13,14 genotype into equal all-or-none events, and eliminates from 
the data all trace of the other two genotypes.  

Figure 4: TrueAllele solves mixtures. Quantitative computer modeling can 
explain the observed data. Better explanations of the data confer higher 
probabilities to their underlying genotypes. In the explanation shown, an 
allele pair is represented by two colored rectangles (blue, green, orange). The 
placement and heights of the allele pairs explain the observed data peaks well, 
and so these genotypes have a high probability.  
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quantities of contributor DNA (bar height). It proposes alleles of 
different sizes (bar locations). Consider a first contributor genotype 
value of 5,6. Since there are no data peaks at those alleles, this hypothesis 
does not explain the data very well. When a proposed pattern has peak 
heights that do not fit the data, its proposed genotypes are assigned a 
low probability. Considering many thousands of possibilities through 
statistical search, those genotypes that better explain the data will 
receive higher probability, and poorer explanations of the data will get 
lower probability. 

In nature, there really is a true set of genotypes present in a DNA 
sample. But all we can know from observing data (through our models) 
is some inference about the possible states of the world, and their 
relative probabilities. A computer can consider a hundred thousand 
different scenarios, each one involving a hundred variables. A person 
cannot be that thorough. 

Match

The TrueAllele computer objectively infers a genotype directly from 
the data, without using a known comparison reference. This approach 
eliminates examination bias [13]. The computer records an evidence 
genotype as a probability distribution. Afterwards, the computer can 
then make an objective comparison to a known reference genotype 
obtained from a suspect or some other person. 

A DNA match statistic describes the strength of association 
between evidence and reference, relative to coincidence. The number is 
calculated from three genotypes–evidence, reference and population. 
The result is a likelihood ratio (LR), and can be stated as: “a match 
between the DNA evidence and a reference individual is (some number 
of times) more probable than coincidence” [14]. 

The logarithm (approximately the number of zeros after the first 
digit) of a LR is a standard measure of information. The log (LR) is also 
called the “weight of evidence” [15]. We use the logarithm of the match 
statistic to compare the information obtained by human and computer 
DNA interpretation methods. 

Results
We now examine some DNA mixture cases, and compare computer 

and human interpretation results. These are all criminal cases on which 
I have reported or testified. Some of the details have been changed for 
anonymity. 

Commonwealth v. Lyons

The evidence in this Pennsylvania homicide was an abandoned 
sweatshirt. The victim had been stabbed 27 times when she was trying 
to break off her relationship with parolee Glenn Lyons. The crime lab 
found a match statistic in the tens of thousands, or 4 zeros after the 
first digit. The prosecutor asked Cybergenetics to re-analyze the DNA 
mixture data. The TrueAllele computer produced a match statistic in 
the trillions, or 12 zeros. 

The human match statistic was a million-fold lower than the more 
accurate computer result. This was partly due to DNA degradation. 
Degraded mixtures are harder for people to interpret because the 
mixture proportions change at every locus. However, a computer can 
mathematically model those locus mixture changes, and produce an 
accurate result. 

We summarize the human–computer information comparison 
with a first point on a scatterplot (Figure 5, case 1). The x-axis gives 

accurate identification information, as reproducibly measured by a 
validated statistical computer system. The y-axis gives the reported 
human estimate. For the Lyons case, we plot a point (12,4) with “12” 
(number of zeros in a trillion) for the true information x-coordinate, 
and “4” (the number of zeros in ten thousand) for the y-coordinate. 
Since match information is the logarithm (i.e. the number of zeros) 
of a match statistic, this log-log scatterplot provides an information 
comparison. 

The combined probability of inclusion (CPI) is the most prevalent 
human mixture interpretation method [16]. But CPI can only give 
evidence in favor of an inclusion (or say nothing at all). Therefore, the 
y-axis for human review has only positive numbers–CPI cannot speak 
against an inclusion. Computer and other likelihood ratio methods 
[17], however, will quantify evidence with either positive or negative 
information. 

Commonwealth v. Foley

Dr. John Yelenic was found in his living room lying in his own 
blood. He had been viciously slashed to death, with his blood splattered 
over unsigned divorce papers. Prior to the homicide, Dr. Yelenic’s 
estranged wife Michelle had moved in with her boyfriend, Pennsylvania 
State Trooper Kevin Foley. There was virtually no physical evidence in 
this case, except for some trace DNA under the victim’s fingernails. 
This Southwestern Pennsylvania murder has been documented in 
books and videos [18]. 

Foley was the first case where sophisticated statistical computing 
was ever used to thoroughly assess a DNA mixture, with results 
introduced in court as criminal evidence. My recent book chapter 
about this landmark computer interpretation of DNA evidence spans 
the crime, pretrial hearing, admissibility, trial, conviction, sentencing, 
appeal, and appellate precedent [19]. 

The DNA under Dr. Yelenic’s fingernails was a mixture that was 
93% from the victim, plus 7% of an unknown contributor. The lab 
inclusion statistic was in the tens of thousands, or 4 zeros, and was thus 
not the strongest of evidence. On the same STR data, the TrueAllele 
computer separated out the two genotypes, and found a match of the 
minor 7% contributor to Kevin Foley in the hundreds of billions, or 11 
zeros. Trooper Foley was found guilty, and sentenced to life in prison. 

We add a second point (11, 4) to the log-log information plot for the 
Foley DNA mixture (Figure 5, case 2). The blue 45° “iso-information” 

Figure 5: TrueAllele vs. human interpretation. This scatterplot compares 
human match results (y-axis) versus the true computer-determined match 
information (x-axis). Both axes express the logarithm (i.e., order of magnitude) 
of a match statistic. Each number refers to a case described in the Results 
section. The cases are color coded as homicide (red), rape (yellow), weapon 
(green) and exculpatory (white). The 45° blue dashed iso-information line is 
where the scatterplot points would reside if human and computer methods 
produced the same DNA match statistic.  
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line shows where human and computer match statistics would equal 
each other. Below that line, towards the bottom right, human review 
has lost DNA match information. 

People may give significantly lower match statistics when discarding 
quantitative information. Since STR data peak heights are not equal, 
thresholds can discard considerable information about genotype 
quantity. While some may think reporting a lower match statistic is 
“conservative”, we shall soon see that this is not always true [20]. 

The Queen v. Shivers

The 2009 Massereene Barracks attack disrupted the ten year 
Northern Ireland peace process. Hooded Real IRA gunmen emerged 
from a car in front of an army barracks, where young unarmed troops 
(who were headed for Afghanistan the next day) were collecting a pizza 
delivery. The gunmen shot at everything in sight, killing two young 
soldiers, Mark Quinsey and Patrick Azimkar. 

Forensic science provided all the evidence [21]. One item was a 
mobile phone found in the burned out getaway car. The phone was 
used to talk about the attack right after it happened. Brian Shivers’ 
DNA was left on that phone. 

Human review of this DNA was inconclusive. That is, there was 
no match information, or 0 zeros. The computer produced a match 
statistic of a billion, or 9 zeros. The human method’s interpretation 
failure was due to the very small amount of DNA in the mixture. In 
2012, Mr. Shivers was convicted and sentenced to 25 years in prison. 
The third scatterplot point (9, 0) lies well below the iso-information line, 
showing that human review can lose considerable DNA identification 
information (Figure 5, case 3). 

State v. Diggins

The fourth case is from the Southern United States. Mr. Booker 
Diggins was sentenced to life in prison for a brutal rape. Two years 
ago, the Innocence Project in New York heralded ABO blood typing 
results that had not been brought out at trial as “bulletproof evidence” 
that Mr. Diggins could not have possibly committed the crime. Defense 
negotiations began with the district attorney for his release from prison. 

The state then found a mislaid rape kit in an attic. The defense 
wanted to analyze this new DNA evidence in order to help find the true 
perpetrator, so they sent the kit off to a private testing laboratory. The 
state lab retained some of the evidence (e.g. a tampon string), but it was 
not interpretable by human review. So the lab sent their STR data to 
Cybergenetics for computer analysis. 

Despite the small amount of DNA, TrueAllele found a match to Mr. 
Diggins in the tens of thousands, or 4 zeros. He was not released from 
prison. A later defense report on the DNA rape kit evidence agreed 
with Cybergenetics TrueAllele findings. Mr. Diggins is still serving his 
life sentence. This was an “almost innocence” case, though not quite. In 
the scatterplot, we see again how at point (4, 0) the computer reported 
a match statistic, but people could not (Figure 5, case 4). 

Commonwealth v. Doe

This Eastern United States rape case has a mixture of three people 
on a glove. The defendant clearly contributed to the mixture, as did a 
victim from another crime. The lab thought that the victim from this 
rape was also included, based on human review of the fuzzy mixture 
data. Their inclusion statistic was very low though, around 100, or 2 

zeros. However, the computer-inferred information did not show 
statistical support for a match to the rape victim. 

The fifth (0, 2) point on the log-log scatterplot has a computer 
x-value of 0 (no information), but a human y-value of 2 (log of 100). 
CPI gives all references the same match statistic–100 in this case. The 
new point falls on the left side of the iso-information line. By not 
making use of all the data, human review might incorrectly include the 
victim, which would falsely implicate the defendant (Figure 5, case 5). 

With threshold-based interpretation methods, only loci that 
support a conclusion are reported. Reasons can be given (e. g. allele 
drop out), but data weighing against an inclusion are not used [20]. 
In this case, the favorable loci only added up to a CPI statistic of a 
hundred. 

The quantitative DNA mixture data (Figure 6) shows how 
information can be lost. The STR peak height versus allele length EPG 
data at this Penta E locus is shown (blue curve). The suspect’s major 
genotype highlights the tall allele pair 13,15 (blue rectangles). The other 
victim (from a different crime) has a minor genotype that is highlighted 
in the shorter 11,13 allele pair (green rectangles). The victim of this 
crime has genotype 8,16 (orange arrows). 

The computer evaluated all triple genotype combinations and 
weightings, not just the one hypothesis shown in Figure 6. TrueAllele 
considered the quantitative evidence data, proposing patterns 
generated from virtually all possible genotypes, contributor quantities 
and other variables. The computer worked on this problem for over a 
day, testing a hundred thousand possibilities. 

At this locus, TrueAllele found dozens of allele pair possibilities 
for a third contributor genotype, most of them quite unlikely. The 
victim’s 8,16 value had very little probability in the evidence genotype. 
TrueAllele determined that the negative information in the evidence 
argued against a DNA match to the victim. 

The lab used a simpler approach, drawing a threshold line across 
the locus data to form allele lists. Peaks that fell under the line were 
discarded, while those over the line were treated as if they all shared 

Figure 6: Quantitative interpretation accurately excludes. Quantitative EPG 
Penta E locus data are shown (blue curve) with allele labels. Peak height 
RFU (y-axis) is plotted against allele size in base pairs (x-axis). A suspect’s 
13,15 genotype is indicated by two tall alleles (blue rectangles), while another 
person’s 11,13 genotype is indicated by two shorter alleles (green rectangles). 
A possible victim 8,16 genotype is also indicated (orange arrows). The 
computer found negative match information between the data and the victim’s 
genotype.  
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the same peak height. Ultimately, this locus was not used in the CPI 
statistic, since the absence of victim alleles was attributed to drop out. 
Human review included 13 of the 15 loci, and assigned a CPI statistic 
of 100 (2 zeros) to every one of the three references. 

TrueAllele instead separated the mixture into its component 
genotypes. Using all 15 loci, the computer found a match to the 
suspect of a quintillion (18 zeros), and a match to the victim of another 
crime also at a quintillion (18 zeros). However, TrueAllele found no 
statistical support for a match to the victim of this crime. As a result, 
the prosecutor dropped charges against the defendant in this case. 

Commonwealth v. Brown

In this sixth case, a single Y-chromosome was found on an alleged 
rape victim’s underwear, quite likely through adventitious transfer. The 
rape kit, and all other DNA evidence, was negative for the defendant. 
All five possible male suspects in the house that night shared the same 
Y chromosome, since they all descended from the same paternal 
grandfather. 

The Y-chromosome DNA could not distinguish between any of 
the likely suspects. Therefore, the DNA did not actually identify the 
defendant. There was no probative information (x=0), but the human-
reported Y-STR match statistic was in the thousands (y=3). We record 
this (0, 3) point on the log-log plot (Figure 5, case 6). Following a 
pretrial hearing, the judge precluded this irrelevant DNA evidence 
from testimony. 

State v. Smith

A man was accused of aiming his gun at five policemen, not 
shooting at them, and then fleeing and “dropping” the gun 35 feet 
away. He is currently incarcerated. Seeking post-conviction relief, his 
defense attorney asked Cybergenetics to assess the DNA mixture data 
from the handgun. 

TrueAllele inferred genotypes from the data, none of which 
matched the convict. The computer found no statistical support for a 
match; the log (LR) value was -1. Human review was also uninformative 
for a match (zero information). This finding adds the seventh point (-1, 
0) to the log-log scatterplot (Figure 5, case 7). 

From the handgun, one of the nonmatching genotypes had an 
expected LR value of a billion, or 9 zeros. This potentially exculpatory 
evidence, not reported by the state lab, adds the eighth point (9, 0) to 
our log-log scatterplot (Figure 5, case 8). Could a DNA database be 
used to find the true person who was holding the gun? 

Unfortunately not, since good data has gone bad. Government 
DNA index systems, designed for reference samples, do not work 
well with mixtures. At best, just 20% of mixtures (the easiest ones) are 
uploaded to a United States DNA index system. These government DNA 
databases use allele lists that rob evidence of probative power, instead 
of using probabilistic genotypes that can preserve DNA identification 
information [11]. Government rules block mixture evidence upload, in 
order to avoid false positive errors [22] that might misidentify people 
in their database systems. 

A better solution is to use a genotype DNA database [22]. Then 
identification information from DNA evidence can be preserved as a 
probabilistic genotype, and compared with offender profiles to produce 
a true LR match statistic. Government agencies may eventually adopt 
information solutions that can better identify criminals and reduce 
crime. Such information-preserving DNA mixture databases are 

currently available from the private sector. For example, Cybergenetics 
TrueAllele genotype database was used in the World Trade Center 
mass disaster for identifying victim remains [23,24]. 

Conclusion
Good DNA mixture data can help make identifications. From 

this data, computers can determine accurate match information [25]. 
TrueAllele validation studies have been conducted on both synthesized 
data and casework mixture samples, comparing computer and human 
review. TrueAllele computer mixture interpretation is thorough, 
objective, sensitive, specific, and reproducible; human review methods 
are not. 

In the cases discussed in this paper, approximate human statistics 
did not correlate well with more exact computer solutions. The 
scatterplot points did not fall along the iso-information line (Figure 
5). Each case has its own reasons for this disconnect between the actual 
data information and less accurate human results. 

Scientific truth does not depend on whether it is presented by the 
prosecution or the defense. Courts may want to more fully account for 
current discrepancies in DNA mixture data interpretation. Computers 
such as TrueAllele are needed to help with challenging mixture 
evidence [26], so that good DNA data does not go bad. 
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