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Introduction 
Stroke is a vascular disorder that adversely affects neurons to cause 

ischemic brain injury. Both macro- and micro-vascular dysregulation 
occurs during I/R that can exacerbate the primary insult as well as cause 
secondary brain injury such as edema and hemorrhage. The cerebral 
vasculature has a central role in stroke injury since the core infarction is 
dependent on the depth and duration of ischemia. In addition, the only 
effective treatment for ischemic stroke is a vascular one–dissolving 
the clot with tPA and rapid restoration of blood flow. In addition, 
any neuroprotective therapy depends on a patent and functional 
vasculature, highlighting the importance of vascular protection as a 
therapeutic approach to limiting stroke damage.

Similar to neurons, the brain vasculature is a major target of I/R 
injury. Cerebrovascular damage occurs early during focal ischemia 
and is progressive with longer durations of I/R. Reperfusion after short 
durations of ischemia can salvage damaged brain tissue; however, 
reperfusion after longer periods of ischemia is not entirely beneficial. 
Postischemic reperfusion can impair autoregulatory mechanisms and 
promote loss of control of cerebral blood flow (CBF) that exacerbates 
ischemic injury [1-7]. Thus, I/R affect the cerebral arteries and arterioles 
that control both the extent of ischemia and the degree of reperfusion 
[2,8]. In this review, we focus on current knowledge on the effects 
of I/R on the structure and function of the cerebral vasculature and 
highlight some of the more promising targets for vascular protection. 

Hemodynamics during I/R

In normotensive adults, CBF is maintained at ~50 ml/100 g of 
brain tissue per minute, provided cerebral perfusion pressure is 
in the range of ~60 to 160 mmHg [9]. Above and below this limit, 
autoregulation is lost and CBF becomes dependent on mean arterial 
pressure linearly [10]. Blood-brain barrier (BBB) disruption and 
edema formation can occur when autoregulatory mechanisms are not 
effective at maintaining appropriate cerebrovascular resistance (CVR) 
[11-14]. Cerebral ischemia causes autoregulatory failure due to several 
vasodilatory mechanisms that are invoked in order to increase flow 

to the ischemic region. For example, occlusion of an artery decreases 
perfusion pressure downstream that causes myogenic vasodilation of 
arteries and arterioles. Lactic acidosis and carbon dioxide also build 
due to decreased clearance, further promoting vasodilation and loss 
of autoregulation. Reperfusion of an ischemic region can result in 
hyperemia due to vascular paralysis associated with hypoxia/ischemia-
induced vasodilation [15-18]. Hyperemia is a common in the acute 
phase of stroke, occurring in ~40-50% of patients within 3 days after 
stroke [11,18]. Cerebral hyperemia can exacerbate neuronal injury 
during reperfusion and promote BBB disruption and brain edema 
due to diminished CVR that exposes the microcirculation to excessive 
perfusion pressure [11,19]. 

Pathophysiological effects of I/R on cerebral arteries 

The cerebral circulation is unique in that the large vessels 
(extracranial and intracranial pial vessels including carotids and 
arteries of the circle of Willis) contribute ~50% of total CVR [20,21]. 
The unusually prominent role of large arteries in vascular resistance 
helps to maintain CBF under conditions that change blood flow 
locally, but also protects downstream vessels during changes in arterial 
pressure [22-24]. Cerebral hyperemia during reperfusion is due to 
vasodilatation of cerebral arteries and arterioles in response to ischemia 
and/or reperfusion. For example, the caliber of the MCA increases 
172% and CBF by 588% of baseline after 30 minutes of reperfusion [7]. 
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Thus, studies have focused on the underlying mechanisms by which 
I/R affect MCA diameter regulation and loss of myogenic tone. The 
significant contribution of large cerebral arteries to CVR, including 
MCA, makes understanding structural and functional changes in these 
vessels in response to I/R relevant.

Myogenic responses during I/R: The myogenic response is a critical 
component of resistance artery function and involves two events: the 
change in diameter in response to a change in pressure (myogenic 
reactivity) and the state of partial constriction at a constant pressure 
(myogenic tone) [25]. Both myogenic tone and reactivity of cerebral 
arteries contribute to CVR and autoregulation of CBF that is facilitated 
by vascular smooth muscle that contracts to increased pressure and 

relaxes in response to decreased pressure [20,23,24,26]. The cerebral 
arteries have considerable myogenic tone, thus contributing to CVR. 
Postischemic reperfusion impairs myogenic responses in MCA that is 
dependent on the duration of I/R. Experimental models of transient 
focal ischemia have showed that after 2 hours of ischemia, myogenic 
tone in MCA was preserved after a brief reperfusion period of 1 minute, 
but was significantly lost after 24 hours [2]. The decrease in tone after 24 
hours of reperfusion was associated with a significant loss of myogenic 
reactivity as well. This study demonstrated that there are threshold 
durations of ischemia and/or reperfusion for myogenic responses. 
For example, when the reperfusion duration was held constant at 24 
hours and the ischemic duration increased, the threshold duration of 

Figure 1: The effect of ischemic duration on myogenic responses and filamentous (F-) actin content of middle cerebral arteries (MCA). 
(A) Myogenic tone development in MCA exposed to different periods of ischemia, all with 24 hours of reperfusion: sham-operated control (n=6) and 15 (n=6), 30 
(n=7), and 120 minutes (n=8) of ischemia. **P<0.01 versus control. 
(B) F-actin content in the same arteries shown in (A). Average F-actin content determined by fluorescence intensity of each group of ischemic arteries. **P<0.01 
versus control [27]. 
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Figure 2: The effect of reperfusion duration on myogenic responses of MCA. 
(A) Graph showing percent tone of MCA exposed to different periods of reperfusion all with 30 minutes of ischemia compared with sham-operated control animals. 
Shown are responses of MCA from both ipsilateral (closed circles) and contralateral (open circles) to occlusion. The amount of tone significantly diminished 
compared with sham-operated control in both contralateral and ischemic arteries as reperfusion duration increased. **P<0.01 contralateral versus ischemic; P<0.05 
contralateral versus sham control; P<0.05 contralateral versus sham control; P<0.05 ischemic versus sham control: P<0.01 ischemic versus sham control. 
(B) Graph showing diameter of MCA after step increases in transmural pressure from 75 to 125 mm Hg after exposure to different periods of reperfusion all with 30 
minutes of ischemia. Myogenic reactivity of MCA significantly diminished as reperfusion duration increased [28].
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ischemia for myogenic tone was between 15 and 30 minutes (Figure 
1A) [27]. This study also found that there was a significant positive 
correlation between diminished myogenic tone and filamentous (F-) 
actin in vascular smooth muscle (Figure 1B), suggesting that loss of 
F-actin is an underlying mechanism by which tone is diminished with 
ischemia. 

The reperfusion threshold for myogenic responses in MCA was 
also determined when the ischemic duration was held constant at 30 
minutes and reperfusion increased up to 22 hours. A significant loss 
in myogenic tone was noted between 6 and 12 hours of reperfusion 
(Figure 2A) [28]. Importantly, MCA on the contralateral side were also 
affected and had diminished tone as well, albeit to a lesser extent as 
the ipsilateral MCA. Similar to the effect on myogenic tone, myogenic 
reactivity was preserved at 6 hours of reperfusion, but diminished after 
12 hours (Figure 2B). In addition, the slope of the pressure diameter 
curve became more positive as the reperfusion duration increased, 
demonstrating greater vascular damage with time that could impair 
autoregulation (Figure 3). 

The pathophysiological mechanisms by which myogenic responses 
are lost after I/R are not completely clear and may be a combination of 
several processes. Vasoactive metabolites (eg. carbon dioxide, acidosis, 
etc.) produced during I/R induce vasodilatation through relaxation 
of vascular smooth muscle, thus decreasing myogenic tone [19,29]. 
However, they cannot completely explain the prolonged vasodilatation 
that occurs, particularly since it persists in vitro when these metabolites 
are not present and in humans for 2 or 3 weeks after stroke [19,30]. 
Thus, more permanent damage likely occurs with prolonged I/R that 
causes vascular damage and decreased myogenic tone. For example, 
myogenic reactivity and tone have been shown to depend on an 
intact and dynamic actin cytoskeleton [31,32]. There is evidence that 
I/R-induced loss of F-actin content in vascular smooth muscle is an 
underlying mechanism by which tone is affected during stroke. In fact, 

ischemia disrupts actin filaments in several cell types and considered 
a major contributor to ischemic damage [33,34]. F-actin disruption 
during ischemia is likely due to decreased ATP levels that occurs 
within the first 15 minutes of cerebral ischemia [35]. During ischemia 
when ATP levels fall, ATP bound to actin is exchange for ADP, thereby 
releasing ATP for cellular use and causing actin polymers to dissociate 
[36]. This compensatory mechanism occurs in several cell types and 
may be a means by which cells preserve ATP, but sacrifice structure. 
In MCA, ischemia-induced loss of tone was related to a loss in vascular 
smooth muscle F-actin, suggesting this is a mechanism by which I/R 
causes loss of tone [27].

Oxidative stress is another important mechanism by which I/R 
affect myogenic responses in MCA that also may be related to loss of 
F-actin. Production of reactive oxygen and nitrogen species (RONS) 
during I/R, including superoxide and nitric oxide that can react rapidly 
to produce peroxynitrite (ONOO- ), can affect tone [37]. Some studies 
have shown that high concentrations of ONOO-, similar to those 
produced during I/R [38], cause vasodilatation of cerebral arteries 
and loss of myogenic responses whereas, lower concentrations cause 
vasoconstriction [39]. The loss of myogenic tone in response to 
ONOO- exposure also positively correlates with a decrease in vascular 
smooth muscle F-actin and an increase in G-actin content, providing 
a mechanistic link between ONOO- and vascular dysfunction during 
I/R [39]. However, it is likely that the mechanism by which ischemia 
affects the cerebral circulation is different from that of reperfusion. 
For example, during ischemia there is upregulation of endothelial 
and neuronal nitric oxide synthase (eNOS and nNOS) activity that 
increases NO production within 10 minutes after focal ischemia that 
returns to normal at 60 minutes [40]. However, during reperfusion 
other mechanisms are prominent, including production of superoxide 
and hydrogen peroxide, that also dilate the cerebral vasculature by 
activating ATP-sensitive K+ (KATP) and large-conductance Ca2+-
activated K+ (BK) channels, respectively [41]. In addition, the hypoxic 
brain tissue synthesizes proinflammatory cytokines that can promote 
adhesion of circulating neutrophils to endothelial cells with subsequent 
release of additional pro-inflammatory mediators and generation of 
RONS by the infiltrated neutrophils, amplifying the inflammatory 
response [42-44]. Thus, RONS are an important therapeutic target for 
the vasculature as well as neuronal tissue during I/R.

The mechanism by which ONOO- causes vascular dysfunction 
has been studied extensively. ONOO- interacts with tissues, causing 
nitrosylation of tyrosine residues that can interfere with normal cellular 
function. Thus, ONOO- causes nitrosylation of F-actin in vascular 
smooth muscle and loss of myogenic tone that was associated with 
depolymerization [45]. The loss vascular smooth muscle F-actin and 
myogenic tone evoked by ONOO- is similar to that seen after cerebral 
ischemia [27,39]. In addition, ONOO- can cause vasodilatation via 
other mechanisms that are not as paralyzing to the vasculature and may 
be more related to transient responses seen during shorter durations 
of I/R. ONOO- has been shown to activate BK channels in vascular 
smooth muscle and cause hyperpolarization, increase production of 
cyclic guanosyl-monophosphate (cGMP), decrease smooth muscle 
cell calcium through sarcoplasmic reticulum Ca2+-ATPase channel 
activity, and cause increased activation of myosin phosphatase activity 
[46,47]. Although ONOO- may be a therapeutic target to limit vascular 
paralysis during I/R, it is worth noting that other studies have shown 
that ONOO- is required for the ischemic tolerance and protection 
induced by lipopolysaccharide [48]. 

Figure 3: Graph showing slope of pressure-diameter curves for middle 
cerebral arteries (MCA) exposed to different periods of reperfusion. 
Arteries that produced a negative slope are considered myogenic (sham-
operated control, 30 minutes and 6 hours of reperfusion), whereas arteries 
that had a positive slope ( 12 hours of reperfusion) had diminished myogenic 
behavior [28].
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Effect of tPA on myogenic responses and vascular function 
during I/R: Currently, the only FDA approved treatment for ischemic 
stroke is to restore CBF using recombinant tPA (rtPA) to recanalize an 
occluded vessel. A major limitation of this pharmacologic treatment is 
that it is restricted to use within 4.5 hours of symptom onset because 
of the potential for adverse vascular effects (intracerebral hemorrhage) 
outside this treatment window [49,50]. Understanding how rtPA 
treatment affects MCA function during I/R may also be important for 
vascular protection. Treatment with rtPA alone significantly diminished 
myogenic reactivity in isolated MCA, a result that was additive if 
arteries were exposed to ischemia [51]. In addition, exposure to I/R or 
rtPA intraluminally caused endothelial dysfunction and significantly 
impaired vasodilation to acetylcholine that was also additive when 
ischemic arteries were perfused with rtPA [51]. These results suggest 
that rtPA administration adversely affects the cerebral vasculature, 
especially under ischemic conditions, and that treatment to protect 
the vasculature with rtPA use should be considered. Protecting the 
vasculature during tPA treatment may increase the time window for 
treatment and decrease its more deleterious effects that can counteract 
the beneficial effect of recanalization.

The cerebral endothelium as a target for vascular protection 
during I/R

The cerebral endothelium has a prominent role in numerous 
vascular functions including regulation of vascular tone [52,53]. In the 
brain, the endothelium has an unusually strong influence on resting 
vascular tone and CBF and is therefore of considerable interest as a 
therapeutic target during disease states [53]. The cerebral endothelium 
produces several vasoactive mediators, of which NO and endothelium-
derived hyperpolarizing factor (EDHF) are some of the most important. 
Under resting conditions, basal NO production by the cerebral 
endothelium inhibits resting tone and thus affects CBF [54]. While the 
exact nature of EDHF is not clear, its hyperpolarizing influence appears 
to depend on the activity of calcium-activated small- and intermediate-
conductance potassium channels (SK and IK channels, also known 
as KCa2.3 and KCa3.1, respectively) due to the findings that specific 
blockade of these channels abrogates EDHF responses [55-59]. While 
EDHF does not appear to contribute to basal tone in cerebral arteries, 
inhibition of SK and IK channels causes constriction of penetrating 
arterioles under control conditions, suggesting that basal EDHF is 
present in these small vessels and inhibits basal tone [60,61]. Thus, 
both NO and EDHF should be considered during I/R because of their 
vasodilator influence. 

Effect of I/R on eNOS: It is well-established that NO has an 
important role in the pathogenesis of brain injury during cerebral 
ischemia. Both nNOS and eNOS are activated during ischemia; 
however, they appear to have opposing effects [62-66]. For example, 
increased nNOS activity can cause neuronal injury, whereas eNOS 
activation has been shown to be protective during stroke [63-65]. Mice 
lacking eNOS expression showed a greater degree of hemodynamic 
compromise with smaller penumbra areas compared to wildtype, 
suggesting that eNOS activity is protective of the brain during focal 
ischemia by improving blood flow in the penumbra [63].

NO is an important target for stroke therapy because it has several 
beneficial effects on the vasculature, but can also cause damage. 
NO mediates vascular responses by causing vasodilatation, and 
inhibiting platelet aggregation and leukocyte adhesion. Thus, it can 
improve reperfusion blood flow through vasodilation and increasing 
collateral flow to the ischemic area but it also importantly prevents 

microvascular plugging by platelets and leukocytes [67,68]. However, 
as described above, NO can also react with superoxide to produce 
ONOO- which interacts with proteins, lipids, and DNA, and promotes 
cytotoxic and proinflammatory responses [69]. In addition, during 
cerebral ischemia the NOS substrate L-arginine and co-factors such as 
tetrahydrobiopterin (BH4) are likely to be rate-limiting causing eNOS 
to generate superoxide (and hydrogen peroxide) instead of NO, thus 
promoting oxidative damage [70,71]. 

Upregulation of eNOS occurs rapidly in the brain during focal 
ischemia and remains upregulated on the ischemic side of the brain 
as long as 7 days of reperfusion [63,66,72]. Despite the increase in 
eNOS expression, our own studies [2,8,51] and numerous others [73-
76], have consistently found that postischemic reperfusion diminishes 
the influence of basal NO on tone and responsiveness of cerebral 
arteries to agonists that activate eNOS (eg., ACh, bradykinin). These 
results importantly suggest that although eNOS may be activated by 
ischemia, reperfusion profoundly affects and diminishes NO-mediated 
vasodilation. 

One mechanism by which I/R can diminish NO-mediated 
vasodilation is through uncoupling of eNOS and production of 
superoxide anion instead. A critical determinant of eNOS activity 
and its ability to produce NO vs. superoxide is the availability of the 
cofactor BH4 [77]. Under conditions of limited BH4 availability, eNOS 
functions in an uncoupled state and the electrons derived from adenine 
dinucleotide phosphate hydrogen (NAD(P)H) are added to molecular 
oxygen instead of L-arginine, leading to the production of superoxide 
[78]. Thus, it is possible that eNOS becomes uncoupled during I/R 
by cofactor depletion because of its enhanced activity in the ischemic 
brain that uses all available BH4 (ie., substrate depletion). In addition 
to substrate and cofactor depletion during ischemia, eNOS can 
become uncoupled through oxidation and inactivation of BH4 during 
reperfusion. The restoration of blood flow following ischemia causes 
a significant increase in production of ONOO- [79]. ONOO- is highly 
cell permeable where it causes cell damage and nitrosylation of proteins 
and nucleic acids [79]. ONOO- readily produces oxidation of BH4 and 
may also be an underlying mechanism by which eNOS is uncoupled 
during I/R [80,81]. 

The activity of eNOS is also regulated by phosphorylation on specific 
amino acid residues that may be affected by I/R [82,83]. NO production 
is increased following Ser1177 phosphorylation but inhibited by Thr495 
phosphorylation [82,83]. Global forebrain ischemia for 10 minutes and 
30 minutes of reperfusion caused de-phosphorylation of Thr495 [84]. 
In this study, Ser1177 phosphorylation was unchanged, but the effect 
on Thr495 suggests greater eNOS activation. Little is known about how 
focal ischemia affects the phosphorylation state of eNOS, but may be an 
important therapeutic target to restore eNOS function. 

eNOS phosphorylation has also been shown to regulate superoxide 
production during eNOS uncoupling [85]. Under conditions of 
substrate depletion, phosphorylation of Ser1177 increased superoxide 
generation by eNOS >50% and altered the calcium sensitivity of 
the enzyme such that superoxide production was largely calcium-
independent [85]. Thus, during I/R, the altered phosphorylation state 
of eNOS can both diminish eNOS activity and produce superoxide if 
the enzyme is uncoupled.

Effect of I/R on EDHF: I/R have been shown to affect EDHF 
dilation in MCA. Endothelial purinoceptor (P2Y2)-mediated dilatations 
are potentiated following I/R via an upregulation of EDHF responses 
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[73]. The basic mechanism by which EDHF-mediated responses are 
increased during I/R is likely through increased intracellular calcium in 
endothelial cells that activates SK and IK channels causing K+ efflux and 
membrane hyperpolarization [57,73]. However, since EDHF does not 
contribute to vascular tone of cerebral arteries under basal conditions, 
it is not likely a prominent target for vascular protection of MCA during 
I/R. In contrast, penetrating brain arterioles (lenticulostriate) and 
parenchymal arterioles have been shown to have basal EDHF. Our own 
study, comparing the effect of I/R on penetrating arterioles, showed 
that basal tone and EDHF responses are well preserved after I/R. In 
contrast, constriction to the NOS inhibitor L-NAME was diminished, 
suggesting that EDHF may be a more robust and persistent vasodilator 
of penetrating arterioles during I/R [60]. 

Endothelial cell calcium during I/R: An increase in intracellular 
calcium ([Ca2+]i) in endothelial cells is central to many signaling events 
during I/R [86]. High levels of [Ca2+]i can impair endothelial barrier 
function [87] and alter activity of enzymes and processes involved in 
regulation of vascular tone, including eNOS and EDHF. Production 
of NO by eNOS is principally activated by calcium-dependent binding 
of calmodulin, making eNOS activation calcium-dependent [88]. 
During cerebral ischemia when [Ca2+]i remains persistently elevated, 
eNOS become continuously active and produces potentially toxic 
amounts of NO [73,89]. Moreover, after 6-12 h of MCA occlusion, 
cerebral ischemia induces expression of inducible NOS (iNOS) in the 
vascular cells, which produces large amounts of NO continuously for 
long periods [90]. Thus, an increase in intracellular calcium in cerebral 
endothelium is pleiotropic and likely an important therapeutic target 
during I/R. The mechanism by which I/R increase endothelial cell 
calcium is not known, but may involve RONS-induced activation of 
SK and IK channels or transient receptor potential (TRP) channels. 

Endothelin production during I/R: Endothelin-1 (ET-1) is a potent 
vasoconstrictor peptide synthesized and released by endothelial cells in 
cerebral vasculature [91]. ET-1 has a significant role in vascular tone and 
CBF regulation and is altered during I/R. Marked elevation of ET-1 in 
plasma, cerebrospinal fluid and ischemic brain has been demonstrated 
in patients and animal models after ischemic stroke [92-94]. ET-1 
regulates vascular tone through the activation of 2 specific receptor 
subtypes, ETA and ETB receptors. Under physiological conditions, 
there is a balance between the vasoconstrictor effect induced by ETA 
receptors on vascular smooth muscle and the vasodilator mechanism 
mediated by activation of ETB receptors on endothelium to produce 
NO [95,96]. ETA receptor antagonists have been shown to improve 
outcome after experimental cerebral ischemia [97-99]. For example, 
ETA receptor antagonists improved microvascular perfusion [98] and 
attenuated the increased in brain water and infarct size observed after 
transient MCAO [99]. In addition, a study using transgenic mice with 
endothelial ET-1 over-expression showed that ETA receptor activation 
contributes to the increased oxidative stress, water accumulation and 
BBB breakdown after transient MCAO [100]. Although these studies 
suggest that activation of ETA receptors during I/R are detrimental 
to stroke outcome, the mechanism by which this occurs is not clear. 
Increased ET-1 during stroke activates superoxide production through 
NAD(P)H oxidase and increases BBB permeability, promoting edema 
[100-102]. In contrast to the role of ETA receptor, ETB receptors, 
primarily expressed in endothelial cells, may have a protective role 
in ET-1 provoked cerebral ischemic injury as ETB blockade increased 
infarct volume after transient MCAO [100]. 

Collateral flow during I/R

The collateral circulation in the brain is the network of arteries and 
arterioles that maintain and stabilize CBF when the principal routes of 
blood flow are occluded or compromised. The collateral blood supply to 
a brain region will maintain normal CBF during an occlusion initially, 
after which mechanisms in response to hypoxia/ischemia are invoked 
that increase flow. If recanalization does not occur rapidly and ischemia 
is prolonged, oxygen demands by the brain tissue cannot be met and 
ischemic brain damage occurs. Primary and secondary collateral 
pathways exist in the brain defined by differences in their conductances 
and contribution to vascular resistance. Primary collaterals are 
the arterial segments of the circle of Willis that are responsible for 
redistribution of blood flow when extracranial or large intracranial 
vessels are occluded [103,104]. These arteries form a low-resistance 
anastomotic loop that provides collateral support to the anterior and 
posterior circulations. Being low resistance, the primary collaterals 
provide immediate redistribution of CBF to ischemic regions through 
existing anastomoses. Leptomenigeal anastomoses are secondary 
collateral vessels that redistribute CBF when occlusion occurs distal to 
the circle of Willis [104]. These pial vessels are high-resistance distal 
anastomoses between vascular territories and determine perfusion 
pressure and the severity of ischemia after distal occlusion to the circle 
of Willis. Because the leptomeningeal arterioles are high-resistance 
vessels, recruitment of flow by secondary collaterals involves invoking 
vasodilatory mechanisms and is slower than recruitment of primary 
collaterals [103,104].

Both the caliber and number of primary and secondary collateral 
vessels determine the degree of collateral supply and therefore the 
severity of ischemia. Overall, the collateral circulation critically 
establishes perfusion pressure during ischemia and maintains 
perfusion to the penumbra [105,106]. Structural remodeling of these 
vessels is also an important determinant of collateral flow because it 
influences their caliber. Outward hypotrophic remodeling (increased 
inner diameter with decreased cross sectional area of the wall), occurs 
when there is chronic hypoperfusion of upstream vessels that alters 
shear stress distally (eg., carotid stenosis, atherosclerosis). Inward 
hypertrophic remodeling (reduced inner diameter and increased cross 
sectional area of the wall) can occur during pathological states such 
as hypertension. Structural remodeling will ultimately determine the 
size of the collaterals and thus hemodynamic reserve capacity when 
maximally dilated during hypoxia/ischemia. Therefore, interventions 
that actively dilate collaterals as well as promote outward remodeling 
may be important therapeutic targets for increasing flow to the 
penumbra and limiting stroke damage. 

The penumbra 

Reperfusion after focal brain ischemia is generally thought to be 
beneficial, however, the window of opportunity for improvement 
of stroke outcome is brief (< 6 hours), after which reperfusion is no 
longer beneficial [103,107]. One target of reperfusion is the ischemic 
penumbra, a region of constrained blood supply in which energy 
metabolism is preserved [108]. The penumbra in the ischemic brain is 
of considerable interest to stroke therapy because it is a region in which 
neurons are electrically silent (cannot fire action potentials), but retain 
a -70 mV membrane potential [109]. Unfortunately, this region is also 
the basis for progressive evolution of ischemic injury, ie., the infarct 
expands to include the penumbra [110,111]. Many neuroprotective 
strategies have been employed to limit expansion of infarcted tissue 
into the penumbra with little success. However, the role of the collateral 
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vessels in evolving infarction is critical and may provide an important 
therapeutic target to salvage the penumbra. Recently, the concept of the 
penumbra has been expanded to include repair mechanisms that begin 
concurrent with stroke damage [112]. Thus, inhibiting only damaging 
processes during stroke treatment may only target half the problem or 
in some cases be harmful. This concept of repair and damage occurring 
simultaneously is probably true for the vasculature as well although 
repair is largely understudied in vascular protection.

Parenchymal arterioles during I/R

Penetrating arteries branch at right angles off the pial arteries and 
lie within the Virchow-Robin space. The penetrating arteries turn into 
parenchymal arterioles once they penetrate into the brain tissue where 
they become surrounded by astrocytic end feet and are innervated 
intrinsically from within the brain tissue [113-115]. Parenchymal 
arterioles have greater basal tone at lower pressures than upstream pial 
arteries [115]. Because of their considerable basal tone, they contribute 
approximately 40% to CVR. While pial vessels are anatomically 
networked such that occlusion of one surface vessel does not appreciably 
decrease CBF [116], penetrating and parenchymal arterioles are long 
and largely unbranched vessels that are not interconnected and as such 
occlusion of an individual arteriole results in significant reductions 
in flow and damage to surrounding brain tissue (infarction) [116]. 
These vessels have been shown to be a bottleneck for blood flow to the 
microcirculation, the occlusion of which allows little if any collateral 
flow due to their unbranched architecture [116]. Penetrating and 
parenchymal arterioles are part of the neurovascular unit and are 
functionally distinct from the larger MCA. In addition to possessing 
greater basal tone than upstream arteries, they also have larger influence 
of EDHF on tone and are largely unresponsive to neurotransmitters 
such as norepinephine and serotonin [60,115,117]. Another significant 
difference between MCA and parenchymal arterioles is their response 
to I/R. Similar to peripheral organ vasculature, pial arteries dilate 
to hypoxic conditions, however, parenchymal arterioles appear to 
lack this response [8,60,118]. Thus, parenchymal arterioles maintain 
significant vascular tone during I/R and therefore likely contribute to 
perfusion deficit and expansion of infarct into the penumbra. 

Microcirculation during I/R

The cerebral capillary bed comprises a unique endothelium 
compared to endothelium outside the central nervous system (CNS) 
and is the site of the BBB. Its unique features are highly protective 
of the brain milieu and include continuous, high electrical resistance 
tight junctions that restrict ion flux, limited transcellular transport, 
very low hydraulic conductivity and a large number of mitochondrion 
[119]. In addition, the cerebral microcirculation is in close association 
with other cell types within the brain, including astrocytes, pericytes 
and neurons separated by the basal lamina, a specialized extracellular 
matrix generated by both endothelial cells and astrocytes [120,121]. 
Together, the cellular and acellular components of the cerebral 
microcirculation comprise a “neurovascular unit” that is an important 
therapeutic target in stroke [122]. During ischemic stroke, microvessel 
integrity is compromised, an event that has far-reaching implications 
for outcome and recovery. Experimental animal models have shown 
that despite recanalization of an occluded artery, the microcirculation 
can limit tissue perfusion due to several mechanisms that occlude 
capillaries, including plugging with cellular elements of blood and 
fibrin, pericyte contraction and cytotoxic edema of endothelial cell and 
astrocyte endfeet [123-127]. Microcirculatory obstruction is implicated 
in the non-reflow phenomenon after reperfusion and negatively affects 

tissue survival by limiting substrate and therapeutic agents, such as 
neuroprotectants, from reaching their target.

Cytotoxic edema results from influx of cations (sodium), into 
the cell through cation channels. Nonselective cation (NC) channels 
are important mediators of cell swelling because they allow flux of 
any monovalent cation to pass [128]. One of the most important NC 
channels in ischemic stroke is the NCCa-ATP channel. This channel is 
not constitutively expressed, but is induced during focal ischemia in 
astrocytes, neurons and endothelium [129]. Inhibitors of the regulatory 
subunit of NCCa-ATP channel, SUR1, prevent cytotoxic edema and 
improve stroke outcome [129]. As ischemia progresses, vasogenic 
edema and hemorrhagic transformation also occur due to microvascular 
disturbances [120-122,130]. Thus, preserving microvascular structure 
and function during I/R is an important target for stroke therapy. 

There are several processes that occur during I/R that specifically 
affect the neurovascular unit. The hypoxic tissue activates microglia, 
astrocytes and endothelial cells that produce cytokines, chemokines 
and matrix metalloproteinases (MMP) [131,132]. Upregulation of cell 
adhesion molecules by vascular endothelial cells promote infiltration 
of leukocytes into the brain that can also secrete cytokines and produce 
RONS [44,130-132]. In addition, cytokines can induce expression of 
several enzymes such as iNOS and cyclooxygenase (COX) that amplify 
the inflammatory response [133]. Thus, post-ischemic inflammatory 
processes cause microvascular dysfunction that can significantly 
exacerbate damage to the ischemic penumbra [131,132]. In addition, 
inflammatory cytokines produced by the ischemic brain can also affect 
BBB integrity and exacerbate edema formation [134]. BBB disruption 
can also result from the increased expression and activation of MMPs 
during ischemia that is increased by pro-inflammatory cytokines 
such as tumor necrosis factor ∀(TNF∀) [135]. In addition to pro-
inflammatory cytokines, other circulating factors are released during 
I/R that increase BBB permeability and promote vasogenic edema 
formation, including vascular endothelial growth factor (VEGF), 
histamine and thrombin [119]. 

Hyperglycemia during I/R

Hyperglycemia is common in acute stroke, affecting up to 40% 
of ischemic stroke patients, often without a preexisting diagnosis of 
diabetes [136]. Hyperglycemia during stroke can be caused by several 
effects, including a generalized stress response to acute brain injury 
and impaired glucose tolerance, but may also be the first presentation 
of previously unrecognized diabetes [137-139]. Hyperglycemia during 
acute stroke is associated with significantly worsened outcome, 
including larger infarction, edema formation and a higher risk of 
mortality [140,141]. The exacerbated damage with hyperglycemia is 
especially prevalent in transient ischemic stroke models and occurs 
less with permanent occlusion [142], suggesting reperfusion may be an 
important factor in hyperglycemic brain injury. 

Hyperglycemia alters vascular responses and can exacerbate 
ischemic brain damage through multiple mechanisms including 
acidosis, vascular inflammation, increased BBB permeability, 
hemorrhagic transformation, accumulation of free radicals and 
impaired vascular reactivity [143].  The mechanisms by which 
hyperglycemia exacerbates ischemic damage has been extensively 
studied. Extracellular hyperglycemia activates Glut-1 transporters 
in cerebral endothelial cells that cause endothelial intracellular 
hyperglycemia [144]. Intracellular hyperglycemia can induce a variety 
of detrimental changes in vascular cells within hours [145,146]. 
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For example, it can decrease NAD(P)H-production, an important 
intracellular antioxidant. Intracellular high glucose can also induce 
posttranslational modifications of proteins via the hexosamine 
pathway and activate protein kinase C (PKC) that increases RONS via 
NAD(P)H oxidase, stimulates pro-inflammatory gene expression and 
impairs NO-mediated vasodilation. Hyperglycemia also causes eNOS 
dysfunction and enhanced plasminogen activator inhibitor-1 (PAI-1) 
expression causing thrombus stabilization and microvascular plugging 
(for review see 138). All these pro-inflammatory, pro-thrombotic and 
pro-vasoconstrictive mechanisms activate in response to intracellular 
hyperglycemia and can have significant effects on vascular function to 
impair reperfusion [142,147,148]. 

One of the most detrimental consequences of hyperglycemic 
stroke is the development of brain edema during reperfusion [149]. 

Experimental studies have shown that hyperglycemia causes edema 
formation after cerebral ischemia that is more pronounced than in 
normoglycemic animals [140,150,151]. Increased BBB permeability 
occurs during hyperglycemic stroke and causes cerebral edema 
[150,152,153]. Different mechanisms have been implicated in BBB 
dysfunction after hyperglycemic I/R injury, including increased 
oxidative stress, MMP activation, enhanced lactic acidosis and 
increased PKC activation [150,151,153]. Both MMP production and 
PKC activation are important therapeutic targets to limit BBB damage 
during hyperglycemic focal ischemia. For example MMPs, particularly 
MMP-9, can degrade components of the extracellular matrix around the 
blood vessels causing proteolytic degradation of the BBB after cerebral 
ischemia [153]. PKC activation by hyperglycemia can directly affect 
BBB permeability through its ability to phosphorylate zona occluden-1 

Figure 4: Important targets for vascular protection during cerebral I/R. 
Some of the molecules present in different cerebral vascular segments that are involved in vascular dysfunction during I/R and may be important targets for vascular 
protection. At the level of MCA, I/R affect endothelial cells through an increase in [Ca2+]i. High calcium levels alter activity of enzymes such as eNOS which produces 
potentially toxic amounts of NO. The excess of NO combines with others RONS such as O2

- to form ONOO-, which decreases the effectiveness of NO and interacts 
with lipids, DNA and proteins causing cell dysfunction and death. eNOS activity is also affected by limited availability and oxidation of the cofactor BH4 and by 
changes in its phosphorylation state. In addition, extracellular hyperglycemia activates Glut-1 transporters, causing endothelial intracellular hyperglycemia which 
induces a variety of detrimental changes in vascular cerebral cells. In contrast, activation of ETB receptor by an increase in ET-1 production during I/R may have a 
protective role in cerebral ischemic injury. In VSM, I/R cause increased RONS that damages important structures, including the actin cytoskeleton. ONOO- causes 
nitrosylation of F-actin and loss of myogenic tone. This pathological mechanism is fed by increased expression of iNOS that produces large amounts of NO for 
long periods and by ETA receptor activation that increases oxidative stress. At the level of penetrating arterioles the signaling molecules that play an important role 
in vascular function are eNOS, iNOS, EDHF and SK and IK channels. Penetrating arterioles have considerable basal tone despite I/R and this likely contributed to 
expansion of the infarct into the penumbra. Thus, remodeling of penetrating arterioles to increase lumen diameter may also be highly protective of the penumbra. 
Finally, postischemic inflammatory processes and RONS production, that are enhanced by iNOS activity, can also compromise the microcirculation. These effects 
on the microcirculation can significantly exacerbate damage to the ischemic penumbra. An important mediator of stroke outcome is the nonselective cation channel 
NCCa-ATP which is involved in cytotoxic edema. In addition, expression and activation of MMPs, ETA receptors and PKC can cause BBB disruption and hemorrhagic 
transformation. (Abbreviations: [Ca2+]i: intracellular calcium; eNOS: endothelial nitric oxide synthase; RONS: reactive oxygen and nitrogen species; O2

-: superoxide; 
ONOO-: peroxynitrite; BH4: tetrahydrobiopterin; Glut-1: glucose transporter 1; ETB receptor: endothelin-1 receptor type B; VSM: vascular smooth muscle; iNOS: 
inducible nitric oxide synthase; ETA receptor: endothelin-1 receptor type A; EDHF: endothelium-derived hyperpolarizing factor; SK: small-conductance calcium-
activated potassium channel; IK: intermediate-conductance calcium-activated potassium channel; NCCa-ATP: nonselective cation channel regulated by cytoplasmic 
Ca2+ and ATP; MMPs: matrix metalloproteinases; and PKC: protein kinase C).
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(ZO-1) affecting the integrity of the tight junction as well as can 
promote calcium/calmodulin-dependent endothelial cell contraction, 
increasing paracellular permeability [154,155]. A recent study showed 
that inhibition of PKC∃ reversed increased BBB permeability during 
hyperglycemic stroke and was effective at preventing edema formation 
in vivo when given prior to reperfusion [144].

Inflammation during I/R

Inflammation is an important mechanism in the pathogenesis of 
stroke [44,131,132,156]. Production of proinflammatory cytokines 
and chemokines increases after stroke, including the cytokines tumor 
necrosis factor-α (TNF-α), the interleukins (IL) IL-1β, IL-6, IL-10, IL-
20 and transforming growth factor (TGF)-β, and the chemokines IL-8, 
interferon inducible protein-10 (IP-10) and monocyte chemoattractant 
protein-1 (MCP-1) [42,131,157]. IL-1 β, TNF-α, IL-8 and MCP-1 
appear to exacerbate ischemic injury, whereas the anti-inflammatory 
cytokines IL-10, TGF-β and IL-1ra appear to be neuroprotective [157]. 
High levels of pro-inflammatory cytokines and lower levels of anti-
inflammatory cytokines are associated increased infarction and poorer 
clinical outcome. Inflammation therefore becomes an important target 
to limit ischemic tissue damage. In fact, some studies have shown that 
the use of anti-inflammatory agents such as IL-1 receptor antagonist 
and IL-10 are associated with better stroke outcome [158,159]. 

Elevated circulating levels of pro-inflammatory cytokines after 
stroke may affect vascular function, including influencing vascular 
tone and acting on the endothelial and vascular smooth muscle 
[160]. Endothelium and vascular smooth muscle express receptors 
for TNFα, IL-1β, IL-6 and IL-10 [161,162]. TNFα, IL-1β and IL-6 
can cause vasoconstriction, increased vasoconstrictor responses, and 
impaired endothelium-dependent vasodilatation [163]. Injection 
of TNFα into the cisterna magna reduces cerebral blood flow in the 
rabbit, demonstrating that this cytokine can affect perfusion [164]. 
The underlying mechanism by which inflammatory cytokines affect 
vascular tone is not well-understood, but may involve cytokine-
induced RONS production. TNFα can stimulate RONS production in 
endothelium by activating oxidative enzymes including COX, xanthine 
oxidase and NAD(P)H oxidase [165]. In addition, cytokines may also 
increase iNOS expression in vascular smooth muscle and endothelial 
cells, which produces an excess of NO that can impair vasomotor 
responses and react with superoxide to produce ONOO- [54,163].

A systemic effect of stroke has been shown in studies that found 
impaired endothelium-dependent vasodilation in cerebral and brachial 
arteries in stroke patients, suggesting that both cerebral and peripheral 
endothelial function is affected by a systemic reaction in response to 
cerebral ischemia [166-168]. The role of circulating inflammatory 
mediators in brain vascular dysfunction and secondary brain injury 
is largely understudied, but may be an important target for vascular 
protection during stroke. Recently, we studied the effect of plasma 
from hyperglycemic animals that underwent MCA occlusion (MCAO) 
on vascular function. We found that circulating factors present in 
plasma during postischemic reperfusion increased myogenic tone and 
impaired endothelial function in nonischemic MCA [169]. 

Conclusions and Future Directions
The successful development of targeted therapies for stroke likely 

requires vascular protection as well as neuroprotection. Thus, an 
understanding of the mechanisms by which I/R affect the cerebral 
circulation would be beneficial to stroke treatment. Because I/R 
affect different vascular segments in the brain, including pial arteries, 

parenchymal arterioles and the microcirculation that control both the 
extent of ischemia and the degree of reperfusion, they are all potential 
targets for vascular protection. After I/R, arteries such as MCA have loss 
of myogenic tone and vascular paralysis can that impair autoregulation 
and promote loss of control of CBF that exacerbates ischemic injury. 
Ischemic brain injury is likely worsened by parenchymal arterioles that 
still have considerable basal tone during I/R, acting as a bottleneck to 
flow to the microcirculation. Microvascular function is also affected 
by I/R, causing cytotoxic edema and BBB disruption that can cause 
edema and hemorrhage, thus contributing to poor outcome after 
stroke. Finally, inflammatory processes and RONS production during 
postischemic reperfusion, that are more intense under hyperglycemic 
conditions, also impair vascular function and may also be targets for 
vascular protection and treatment of secondary brain injury. Figure 4 
summarizes some potentially important molecules and pathways that 
are therapeutic targets to protect the vasculature during stroke. 

There are several potential therapeutic targets for vascular 
protection, however, the translation of these preclinical results into 
therapies that improve ischemic stroke outcome is still important. 
Combined therapies that include vascular protective agents as 
well as neural protective agents may enable development of more 
effective stroke treatment. This approach may be superior to single 
treatment because it would maintain the supply of necessary 
nutrients and neuroprotective agents to the brain tissue a risk, while 
effectively removing waste and cellular debris. In addition, because 
of the importance of the high resistance collateral circulation in the 
pathophysiology of stroke, targeted therapies that selectively dilate 
intraparenchymal arterioles during reperfusion may prove useful to 
salvaging the penumbra and preventing expansion of the infarct. 
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