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Introduction
Most risk prediction and causation models in epidemiology are 

based on additive combinations of risk factors in a regression model 
framework, and the additive structure implies that variables typically 
act, unless interaction effects are introduced, without influence on 
the other variables, to yield a risk of developing disease. Since they 
are simply mathematical constructs, the models do not necessarily 
provide a plausible causal representation of how disease develops. One 
method to more explicitly consider causality is to attempt to describe 
the influence of variables on a particular disease outcome, accounting 
for causal pathways that are, at least, plausible, in the form of a directed 
acyclic graph (DAG). These can be built using learning Bayesian 
network algorithms [1]. 

Directed acyclic graphs (DAGs), also known as probabilistic 
networks, or Bayesian networks, encode a structure of conditional 
independence between variables, represented by nodes of a graph. 
Connections between nodes imply causal influence, observed in the 
data as statistical dependence. These connections are often directed, 
to indicate which variable influences the other (referred to as directed 
edges). In this way, DAGs represent a set of conditional dependence and 
independence properties associated with epidemiological variables [1].

In a DAG, no distinction is made between ‘independent’ and 
‘dependent’ variables in the sense used in regression modelling. The 
idea underlying their use is to fuse domain knowledge with information 
from the collected data into a model which mimics a network of causal 
influences of how the observed data were generated.

DAGs are therefore useful for elucidating possible causal pathways 
and have been applied in epidemiology for this purpose [2]. However, 
they also have a role in forming sensible judgements about variables to 

be included in regression prediction models. For example, a key idea 
of Pearl, who has been a proponent of DAG ideas, is that variables may 
act as ‘colliders’ [3]. That is, on a causal path between exposure and 
outcome, another variable on the path is entered and exited through 
arrowheads, which indicate more than one influence (collision of 
influences) on the variable. Here, we interchangeably use the terms 
‘cause’ and ‘influence’ to indicate directional conditional dependence, 
or a link between variables, generated by a computer algorithm.

This idea of including an explicit causal understanding is absent 
from much statistical analysis. Including colliders as regressors can 
result in unpredictable behaviour, biasing measures of association in 
a regression model. Pearl shows that bias may increase, by introducing 
dependence from unobserved or other variables, rather than reduce, 
after their inclusion. Further, in certain instances, adjusting for 
colliders, or their ‘descendants’, that is variables which are causally 
influenced by colliders, may indicate no causal influence between the 
variable of interest and the regression model’s outcome variable, when 
in fact a causal relationship does exist [3]. DAGs, derived from data, 
may help identify such variables, so that they can be omitted, rather 
than be included in regression models. 
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Abstract
By testing for conditional dependence, algorithms can generate directed acyclic graphs (DAGs), which may help 

inform variable selection when building models for statistical risk prediction or for assessing causal influence. Here, we 
demonstrate how the method may help us understand the relationship between variables commonly used to predict 
cardiovascular disease (CVD) risk.

The sample included people who were aged 30 to 80 years old, free of CVD, who had a CVD risk assessment in 
primary care and had at least 2 years of follow-up. The endpoints were combined CVD events, and the other variables 
were age, sex, diabetes, smoking, ethnic group, preventive drug use (statins or antihypertensive), blood pressure, family 
history and cholesterol ratio. We used the ‘grow shrink’ algorithm, in the bnlearn library of R software to generate a DAG.

A total of 6256 individuals were included, and 101 CVD events occurred during follow-up. The accepted causal 
associations between tobacco smoking and age and CVD were identified in the DAG. Ethnic group also influenced risk 
of CVD events, but it did so indirectly mediated through the effect of smoking. Drug treatment at baseline was influenced 
by a wide range of other variables, such as family history of CVD, age and diabetes status, but drug treatment did not 
have a ‘causal’ association with CVD events.

Algorithms which generate DAGs are a useful adjunct to traditional statistical methods when deciding on the 
structure of a regression model to test causal hypotheses.
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To develop prediction models, we believe that a causal understanding 
is likely to lead to more accurate and reliable predictions than those 
developed using standard statistical methods alone [4,5]. In this study, 
we explore a small database of CVD and associated risk factors using 
DAG techniques to inform variable selection for risk prediction models, 
and, it is hoped, to better explain the development of CVD.

Methods
The analysis is based on a cohort assembled by primary care 

practitioners in the Auckland and Northland regions of New Zealand 
using the PREDICT programme for CVD risk management that 
is integrated with patient electronic health records [6]. Cohort 
participants were patients attending their primary care practitioners 
who had their CVD risk formally assessed using a Framingham Heart 
Study risk prediction equation [7]. The information, from participating 
GPs, was stored on a secure project web-server and each patient was 
linked to national health databases via an encrypted version of the New 
Zealand national health index (the NHI) number. This unique number 
is allocated to all New Zealand residents and attached to their routine 
health records. 

Databases that were linked included: hospital discharges, mortality, 
and drug dispensing. We selected a group of individuals enrolled 
between the 1st of Jan 2006 to the 31st of December 2007.Two years after 
the baseline assessment we determined if they had been admitted to 
hospital with CVD or died from CVD or other causes by consulting 
hospital diagnosis and cause-of-death information. Diagnosis codes 
that were used have been listed elsewhere [6]. 

Individuals under 30 or over 80 years of age at the time at the time 
of screening were excluded because CVD is uncommon under 30 years 
and hospital diagnoses are known to be less accurate in older people. 
We also excluded people with a history of prior CVD or heart failure, 
identified by a general practitioner diagnosis of CVD or hospitalisation 
with CVD in the last five years, or those dispensed a loop diuretic in the 
six months before assessment, who were assumed to have heart failure. 
The variables which were considered as candidates in the DAG were: 
age-at-enrolment, sex, diabetes, smoking, ethnic group, family history 
of premature CVD, statin use, antihypertensive drug use, systolic blood 
pressure, total: high-density-lipoprotein (HDL) cholesterol ratio and 
CVD events during follow-up. Continuous variables were categorised, 
mostly into deciles, as this format is required for the particular DAG 
algorithm (see below) that we selected. The categorical variables were 
included as dummy variables without an ordinal structure.

The R package bnlearn drew the DAG, using the ‘growshrink’ 
algorithm, first developed by Pearl [8]. An understandable summary of 
the algorithm has been documented elsewhere [1,9,10]. The algorithm 
effectively filters links out of a full skeletal DAG, in which all nodes 
are initially connected except those ‘banned’ (see below), based on 
tests of conditional independence between a pair of nodes given all 
possible subsets of the rest. We used the Monte Carlo permutation 
tests [11] option which has performed better in simulations in which 
the causal structure of the data is known, compared to standard chi-
square tests [8]. Logical rules are applied to determine the direction of 
links (conditional dependence between variables), so that cycles are not 
introduced and patterns of conditional independence found in the data 
match the generated DAG. 

We estimated link influence in the final DAG by estimating the 
beta-coefficient for a regression for each potential causal effect in which 
the variable at the base of the arrow (‘cause’) was considered a covariate, 

and the variable at the head of the arrow (‘effect’) was considered the 
outcome or dependent variable. Other variables which opened ‘back 
door paths’ (Pearl’s terminology for confounding) between cause and 
effect variables were included as covariates in the regression. Either 
linear or logistic regression was used depending on whether the ‘effect’ 
variable was continuous or categorical. 

For the link between ethnic group and family history of disease, 
we adjusted for age. For, although age directly causes CVD, it does not 
influence ethnic group, and is in fact ‘banned’ (see below), so does 
not qualify as a confounder. Age does, however, modify the risk of an 
individual reporting a positive family history of CVD and so we felt 
that it was sensible to adjust for age in this instance [12,13]. Other 
adjustments in the regressions are indicated in Table 1.

The bnlearn algorithm allows implausible causal influences to be 
‘banned’. The following rules generated the banned list:

• Sex, ethnic group and age must not be caused by any other variable. 

• Family history must not be caused by drug treatment variables.

• he outcome, fatal and nonfatal CVD, must not cause any other 
variable.

Results
After the selection criteria were applied, 6256 subjects were available 

for analysis, 101 (1.6%) of whom experienced a CVD event during 
follow-up, and 35 (0.6%) of whom died of causes other than CVD. 
Table 2 shows that age-at-enrolment, ethnic group, smoking status, 
antihypertensive drug use, systolic blood pressure and diabetes status 
were significantly associated with event status. Among ethnic groups, 
Maori were at highest risk of a CVD event (estimated odds ratio: 1.87; 
95% CI: 1.09 to 3.10). Those who used either statins or antihypertensive 
agents were at higher risk of CVD than non-users.

The derived DAG is depicted in Figure 1. Directed arrows indicate 
the direction of ‘causal’ influence between variables. Only two direct 
influences on cardiovascular disease are detected: age and cigarette 
smoking. 

Ethnic group influences risk of cardiovascular disease, but it does 
so mediated through the effect of smoking. Age influences several 
other variables, such as family history of disease and the risk of taking 
preventive drug treatment. Ethnic group influences three variables: 
family history, smoking and diabetes status. The ratio of total: HDL-
cholesterol concentration is influenced by two variables: sex and 
cigarette smoking. 

There was no link between anti-hypertensive or statin therapy and 
cardiovascular disease. Also, we observed that commonly accepted 
causal associations, such as systolic blood pressure and total: HDL-
cholesterol ratio did not show a causal link to CVD events. This 
contrasts with strong univariable associations between systolic blood 
pressure and CVD (Table 2). The analysis, also, did not causally link 
statin use with the cholesterol ratio variable.

Indices of link influence are given in Table 1. These are beta-
coefficients derived from regressing the cause (tail of arrow) on the 
effect (arrowhead), using either linear or logistic regression, adjusting 
for other immediately adjacent influences on the effect variable. 
All links between age and other variables show strong evidence of 
association, along with ethnic group, male sex and diabetes and their 
causal links. Strong associations were noted between diabetes status 
and use of preventive drugs. 
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Cause Effect Low+ High+ Beta-coeff.(95% CI) Estimated odds ratio 
(95% CI)

Age CVD 43.4 65.2 1.54 (1.11,  1.97) 4.65 (3.03,  7.14)
Age Statin use 43.4 65.2 0.84 (0.69, 0.99) 2.31 (1.99,  2.69)
Age Anti-hypertensive 43.4 65.2 1.44 (1.31,  1.57) 4.23 (3.72,  4.82)
Age Family history of CVD 43.4 65.2 -0.31(-0.43, -0.20) 0.73 (0.65,  0.82)
Age Systolic blood pressure 43.4 65.2 10.42 (9.5, 11.34) N/A
Age Sex (men) 43.4 65.2 -0.73 (-0.83,  -0.62) 0.48 (0.43,  0.54)
Ethnic group Diabetes Other Indian 1.64(1.33,  1.95) 5.14 (3.78, 7.00)

Other Maori 1.03(0.84,1.23) 2.81 (2.31, 3.42)
Other Pacific 1.86(1.68, 2.04) 6.44(5.39, 7.70)

Ethnic group Smoker Other Indian -0.50 (-0.99,  -0.01) 0.60(0.37,  0.99)
Other Maori 1.28(1.12,  1.45) 3.60(3.05, 4.25)
Other Pacific 0.72(0.54,  0.91) 2.06 (1.72, 2.48)

Ethnic group (adj. for age) Family history of CVD Other Indian 0.02(-0.28,  0.32) 1.02(0.75,  1.37)
Other Maori -0.24(-0.41,  -0.07) 0.79 (0.67,  0.93)
Other Pacific -1.03 (-1.24, -0.82) 0.36 (0.29,  0.44)

Diabetes (adj. for age) Statin use No Yes 1.94 (1.77,  2.10) 6.94 (5.90,  8.16)
Diabetes (adj. for age) Antihyper-tensive use No Yes 1.68 (1.53,  1.84) 5.38 (4.60,  6.28)
Statin use(adj. for age) Antihyper-tensive use No Yes 1.70 (1.55,  1.86) 5.49 (4.69,  6.42)
Anti-hypertensive (adj. for age) Systolic blood pressure No Yes 7.30(6.28,  8.33) N/A
Smoker (no adj.) CVD No Yes 0.59(0.15,  1.03) 1.80 (1.16,  2.79)
Smoker (no adj.) Total: HDL-cholesterol ratio No Yes 0.51 (0.43, 0.59) N/A
Family history (adj. for ethnic group and age) Statin Use No Yes 0.42 (0.26,  0.58) 1.52 (1.30,  1.79)
Sex (no adj.) Total: HDL-cholesterol ratio Female Male 0.61(0.55,  0.67) N/A

CVD: Cardiovascular disease. HDL: high density lipoprotein. adj.: adjustment. N/A: not applicable.
+for age, comparisons were made at the 84th and 16th centiles to allow comparison with measures of effects from binary variables [21]. 
Table 1: Lists of causal links andestimated beta-coefficients from linear or logistic regression, adjusted for variables, as indicated in the DAG). Also odds ratios for logistic 
regression models.

CVD No CVD Total Test stat. P-value
Total 101 6155 6256
Gender Chisq. (1 df) 0.343
Men 61 (60.4) 3395 (55.2) 3456 (55.2)
Age at enrolment t-test  (6254 df) < 0.001
Mean(SD) 61.7 (10.2) 54.1 (10.5) 54.2 (10.5)
Ethnic group Fisher’s exact
test (3 df) 0.036
Other 62 (61.4) 4348 (70.6) 4410 (70.5)
Maori 22 (21.8) 826 (13.4) 848 (13.6)
Pacific 16 (15.8) 773 (12.6) 789 (12.6)
Indian 1 (1.0) 208 (3.4) 209 (3.3)
Smoking status Chisq. (1 df) 0.012
Yes 28 (27.7) 1082 (17.6) 1110 (17.7)
Statin treatment at baseline? Chisq. (1 df) 0.127
Yes 20 (19.8) 860 (14.0) 880 (14.1)
Antihypertensive treatment at 
baseline?

Chisq. (1 df) <0.001

Yes 48 (47.5) 1637 (26.6) 1685 (26.9)
Systolic blood pressure 
(mmHg)

Ranksum test <0.001

Median(IQR) 140 (130,150) 130 (120,142) 130 (120,143)
Diagnosis of diabetes? Chisq. (1 df) 0.0143
Yes 24 (23.8) 896 (14.6) 920 (14.7)
Total to HDL-cholesterol 
ratio

Rank sum test 0.744

Median(IQR) 3.7 (3.1, 4.8) 3.8 (3.1, 4.7)  3.8 (3.1, 4.7)
Premature Family history? Chisq. (1 df) 0.520
Yes 31 (30.7) 1681 (27.3) 1712 (27.4)

IQR: Interquartile range. HDL: high density lipoprotein. CVD: cardiovascular disease. Stat: statistic. df: degrees of freedom. Chisq: chi-square test of independence
Table 2: Sample characteristics by cardiovascular disease status: numbers (% of column population unless otherwise stated).
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From the logistic regression analyses, the greatest odds ratios were 
between ethnic group and diabetes status. Pacific people were4.4 times 
more likely than ‘Others’ to be diagnosed with diabetes (estimated OR: 
6.44, 95% CI: 5.39, 7.70; prevalence of diabetes among Others: 8.6%) 
and Indian people were almost four times more likely than ‘Others’ 
to have the diagnosis in this cohort (estimated OR: 5.14, 95% CI: 3.78 
to 7.00). For continuous outcome measures, those who used anti-
hypertensive drugs had an average systolic blood pressure 7.30 mmHg 
(95% CI: 6.28 to 8.33) higher than people who did not use these drugs. 

Discussion
In this exploratory analysis with a relatively small dataset, we 

have shown that a DAG learning algorithm generated a plausible 
graph explaining the occurrence of cardiovascular disease. The DAG 
captures the two known key causal influences of CVD: age and cigarette 
smoking. It also demonstrates the well-known influence of age on other 
variables, such as systolic blood pressure [14] and preventive drug 
use [15]. Positive or higher values of these variables increased with 
advancing age. 

The DAG may help inform variable selection decisions for regression 
modelling to establish magnitude of effects. For example, from our 
data, ethnicity influences diabetes, cigarette smoking, and family 
history of premature CVD. These ‘causal’ relationships indicate that in 
trying to assess the effects of ethnic group on CVD, adjusting for any 
of these mediating variables will bias the association. It is equivalent to 
adjusting for blood pressure level when investigating if there is a causal 
relationship between body mass and CVD, as blood pressure is on the 
causal pathway. Similarly, the DAG simplifies assessing the influence of 
potential confounding factors on CVD incidence. It also suggests that 
none of the other baseline variables confounds the relationship between 
ethnicity and CVD, since no other variable directly influences ethnic 
group. Thus, when assessing the causal effect of ethnicity, it may only be 
necessary to adjust for age, since, as we argued before, it is a modifier of 
the effect of ethnic group on CVD. 

An interesting feature of the DAG was the link between age and 

reported family history, showing a negative relationship. This may 
reflect the belief and reporting practice of the physician, who may only 
enquire about family history of CVD in younger patients, assuming that 
older patients will not have a family history. An alternative assumption 
is that genetic causes of CVD only manifest disease in younger patients, 
so that older patients, when risk assessed, are assumed not to have a 
genetic predisposition.

Again, if this DAG were a valid representation of causality it would 
suggest that very few of the variables that were measured actually cause 
CVD, so in assessing the effect of various exposures, some adjustment 
may cause more harm than good. It also counters the common practice 
in clinical research of reporting ‘independent risk factors’ after adjusting 
for a number of other variables by regression [16] and considering 
them as causal.

The DAG presented here also may help identify what Pearl terms 
‘barren proxies’ when assessing causal influences. These are variables 
which have no direct influence on either the exposure or outcome 
variables, but are themselves causally influenced by factors that are 
either related to exposure or disease, or possibly both. In this sense, 
they could be considered as proxy measures of either exposure 
or disease. For example, consider a scenario in which one was to 
investigate the statistical evidence for a causal link between sex and 
CVD incidence. In this case, including the cholesterol ratio variable as a 
covariate, which, in this data set is influenced by sex, but does not show 
convincing evidence of influencing disease status, may increase (rather 
than reduce) bias in estimating the strength of association between sex 
and CVD in a regression model. Thus, in this dataset the cholesterol 
ratio would be termed a barren proxy. As with the ethnicity example 
above, the value of excluding the cholesterol ratio in a causal analysis is 
distinct from the value which the cholesterol ratio variable may play in 
predicting disease incidence.

Some known links emerged from the analysis, for example that 
between cigarette smoking and serum lipids has been long described 
[17]. The DAG did not, however, directly link serum lipids with CVD. 
In addition, the DAG and the effect estimates in Table 1 identified that 

 

CVD: Cardiovascular disease. HDL: high-density lipoprotein cholesterol concentration. TC: total cholesterol concentration. 
Figure 1: DAG, derived from the grow-shrink algorithm. Grayed boxes indicate outcome variables.
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of checking whether the assumptions encoded in the researcher-drawn 
DAG are actually observed in the study data. 

In this exploratory study, we demonstrate how a simple DAG could 
shed light on the likely causal structure of risk factors for incident 
cardiovascular disease. The derived graph provides useful information to 
inform variable selection decisions when assessing causal relationships 
with the disease, and since they are related concepts [4], the DAG also 
usefully informs the development of models used for prediction.
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anti-hypertensive drug treatment increases systolic blood pressure. As 
anti-hypertensive drugs are known to lower blood pressure, this, at first, 
seems counter-intuitive. However, the drug use data is collected before 
the blood pressure information so this is the only sensible direction for 
the link to be oriented. The orientation of the link means that people 
were taking the drugs simply because their blood pressure was high, 
and that, on average, treated individuals had a higher blood pressure on 
average, than untreated individuals (7.3 mmHg, adjusted for age) when 
they were screened.

This analysis clearly has some limitations. These include the 
likelihood that some associations are not identified because of type-2 
errors (only 101 CVD events occurred). There may also be information 
bias and unmeasured variables that could affect the nature of the DAG. 
However the main objective of this paper is to demonstrate the potential 
of the DAG learning algorithm rather than add to our knowledge of 
CVD risk. A further limitation of the DAG algorithm is that it does not 
deal with time-to-event data, commonly used in cohort studies, which 
may be censored. In these analyses we used a short, two year period of 
follow-up, and in this period there were few losses to follow up, mostly 
from non-CVD deaths. 

There are a few other studies which have used learning Bayesian 
networks to explore similar datasets. Twardy et al. [18] used Bayesian 
network algorithms, based on minimisation of information metrics, 
to determine the causal structure of the data in two cohort studies of 
cardiovascular disease. The authors did not exclude, or ban, implausible 
relationships, as in our study. Also, their study was limited by a high 
proportion of cases in which some covariates were missing. In their 
‘final’ model, several implausible relationships were present, such as 
diabetes and weight influencing age. Their model described age as the 
only influence on coronary heart disease and had some similar findings 
to our study, of age influencing many risk factors: total cholesterol, 
triglycerides, systolic blood pressure, smoking status and height. Unlike 
our study, some known causal links were included such as between 
diabetes and systolic blood pressure, which were not drawn in our 
DAG, even though it is well known that diabetes raises blood pressure 
[19].

To summarise the implications of our DAG for statistical modelling, 
we suggest that when using regression to assess the causal influences for 
cardiovascular disease, an analysis could be done to generate a DAG to 
estimate the conditional association between disease status and other 
variables. Only those variables which appear causally related – that is, 
with arrows that point to disease–should be included in the model. This 
means, for our data we would only include age and smoking status, 
along with the exposure of interest, in a regression. Other variables 
may be justified if they were thought to be important effect modifiers 
or confounders. Effect modification is not captured in the DAG, so 
inclusion of variables for this reason will not be informed by the DAG. If 
justified as confounders, researchers must think carefully about whether 
they are likely to act in such a way, that is, causally influence both the 
exposure of interest and the outcome, rather than act as ‘barren proxies’. 
The Bradford-Hill criteria [20] may be used to guide these decisions. In 
contrast, for developing prediction algorithms, many variables can be 
used in statistical models that may be associated, but not necessarily 
causally related to disease.

Also, it is increasingly common practice for researchers to propose 
a DAG, drawn from informed scientific knowledge, which is then 
used to inform variable selection when testing causal relationships in 
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