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Atherosclerosis is the major underlying pathology of cardiovascular 
disease which is in turn the largest cause of premature mortality in 
developed countries [1]. Rising obesity and diabetes rates are associated 
with factors that greatly accelerate the development of coronary artery 
and other macrovascular diseases. The major areas of investigation 
of atherosclerosis are focused on the initial pre-inflammatory stage 
in which atherogenic lipoproteins are trapped in the vessel wall by 
modified proteoglycans, the inflammatory stage in which immune cells 
penetrate the vessel wall accumulate cholesterol debris and generate 
atherosclerotic plaques and the final stage in which plaques rupture 
precipitating the lethal clinical event [2,3]. The initial stage depends 
upon the action of growth factors to stimulate hyperelongation of 
chondroitin sulfate/dermatan sulfate glycosaminoglycan (GAG) chains 
on the small lipid binding proteoglycan biglycan [4]. This is associated 
in vivo with the elevated expression of GAG synthesizing enzymes in 
mouse models of atherosclerosis [5]. Transforming Growth Factor 
(TGF)‑β is closely associated with the development of atherosclerosis 
and it is an important modifier of GAG structure [6,7]. TGF‑β signals 
via serine/threonine phosphorylation of Smad transcription factors 
[8,9]. This pathway is involved in proteoglycan synthesis in vascular 
smooth muscle cells [10] and also induces growth in fibroblasts [11]. 
Phosphorylation of Smad2/3 can occur directly in the carboxy terminus 
and indirectly in its linker region [12]. These phosphorylation sites in 
the linker region of Smad2/3 provide potential sites for the action of 
the prolyl peptidyl isomerase, Pin‑1. Pin‑1 is being investigated for its 
potential as a therapeutic target in cancer [13] but it might also in this 
context be a therapeutic target in cardiovascular disease.

Pin1, a member of theparvulin family of peptidyl prolyl isomerases, 
has a unique preference for binding via its N-terminal WW domain 
to phosphorylated-serine/proline or -threonine/proline sequences in 
proteins. The unique Pin1 C-terminal catalytic domain subsequently 
catalyses a cis or trans isomerisation of the bound protein. The prolyl 
isomerisation is a rate-limiting step in protein folding and induces 
conformational changes, leading to distinct effects in different 
target proteins, including increased stability or turnover, changes in 
sensitivity to phosphatases, altered enzymatic activity or subcellular 
localization, and enabling different ligand protein interactions. Over 
30 Pin1 targets have been identified [5,14,15]. Pin1 is overexpressed in 
many cancers and is associated with transformation and uncontrolled 
cell growth, Alzheimer’s disease and asthma [14,15]. Pin1 is a 
significant component of TGF-β signalling. TGF-β signals can regulate 
cell proliferation, differentiation, migration and apoptosis all known 
to be important processes in the pathogenesis of atherosclerosis. A 
role for TGF-β in neointimal hyperplasia of early atherosclerosis is 
well established [16]. Receptor Smad transcription factors Smad2 and 
Smad3 are critical signalling components of the TGF-β signal cascade 
that result in regulation of gene transcription. A Pin1 binding motif in 
the linker region of Smad3 at threonine residue 179 is phosphorylated 
by kinases CDK8/9 in response to TGF-β [17] and binds the WW 
domain of Pin1 to generate maximum transcriptional activity of 
genes involved in promoting TGF-β mediated migration and invasion 
[18]. Pin1 is also involved in intimal hyperplasia via regulation of 
the antioxidant enzyme hemeoxygenase-1 and in vascular smooth 

muscle proliferation [19]. Overexpression of Pin1 in vascular smooth 
muscle cells reduces nuclear levels of nuclear factor E2-related factor-2 
via induction of ubiquitinylation and thereby decreases the levels of 
hemeoxygenase-1 and subsequent neointimal formation [19].

Recently it has been shown that Pin1 catalyses protein isomerisation 
of activated Protein Kinase C (PKC) [11,20]. The pro-atherogenic 
effects of activated PKC in vascular smooth cells and endothelial cells 
are well-known. A number ofcritical cell surface receptor signalling 
pathways activate PKC including the receptor for endothelin, a G 
protein coupled receptor and the receptor for PDGF a protein tyrosine 
kinase receptor. Both receptor signalling cascades lead to atherogenic 
changes in the extracellular matrix of the blood vessel wall particularly 
changes to the lipid binding glycosaminoglycan chains of proteoglycans 
[21,20]. Other important atherogenic vascular changes induced by 
agonist induced PKC activation include increases in contractility [22], 
extracellular matrix deposition [23] and cellular hypertrophy and 
proliferation.Pin1 binding and isomerisation to the trans configuration 
of activated conventional PKC isozymes results in down-regulation of 
their PKC expression and activity as a result of ubiquitinylation and 
degradation. Pin1 acts as a molecular timer to determine the cellular 
lifetime of the active conventional isozymes, in contrast the novel 
PKCisozymes are already in the trans configuration and are bypassed 
by Pin1 [11]. The length of time active PKCisozymes are able to signal 
will have significant impact on subsequent signalling outputs thereby 
influencing atherogenic changes in susceptible cells. Pin1 catalysed 
isomerisation of PKC thus adds an additional post-translation protein 
modification that significantly impacts on its downstream signalling 
pathways in concert with the more well-known and fully described 
phosphorylation and dephosphorylation events. Cis-trans isomerase 
Pin1 is increasingly being recognised as a key component of growth 
factor signalling pathways. Pin1 causes important changes in a number 
of crucial signalling elements and warrants detailed studies of its actions 
and roles in vascular biology and particularly in the development of 
atherosclerosis. Its relevance as a potential target in the prevention of 
the development of atherosclerosis needs to be fully explored.
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