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Abstract
Stem cells exert therapeutic effects against ischemic stroke via transplantation of exogenous stem cells or 

stimulation of endogenous stem cells within the neurogenic niches of subventricular zone and subgranular zone, or 
recruited from the bone marrow through peripheral circulation. In this paper, we review the different sources of stem 
cells that have been tested in animal models of stroke. In addition, we discuss specific mechanisms of action, in 
particular neurovascular repair by endothelial progenitor cells, as key translational research for advancing the clinical 
applications of stem cells for ischemic stroke.
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Stroke: A Significant Unmet Clinical Need
Stroke is the third leading cause of death and the leading cause of 

long-term disability in the United States  [1]. In 2004, the direct and 
indirect costs of stroke in the United States were estimated to be $53.6 
billion [2]. The mean lifetime cost of ischemic stroke to a single patient 
in the United States is estimated at $140,048; this includes inpatient 
care, rehabilitation, and follow-up care necessary for lasting deficits. 
Approximately 2 out of every 1000 adults will have their first stroke 
in any given year in the United States  [3]. The numbers of affected 
individuals, the costs necessary to facilitate their care, and rehabilitation 
coupled with the lack of therapies indicate that stroke represents a 
current significant unmet medical need.

The current therapy for stroke is limited  [4-7]. Other than one 
recombinant protein therapy directed at the dissolution of thrombi in 
affected blood vessels in adults following stroke, tumor plasminogen 
activator or tPA, no specific treatment is available for either focal 
cerebral ischemia or global ischemic event. A major limitation with tPA 
is its very narrow therapeutic window of 4.5 hours after stroke onset. 
Beyond this timing of administration, tPA presents with deleterious 
side effects, in particular bleeding and hemorrhagic transformation, 
which can exacerbate stroke injury and counteract the benefits provided 
by reperfusion of the occluded artery [8]. To circumvent this limited 
tPA time to treat patients, telemedicine has been set-up in rural areas 
lacking access to medical centers [9,10] in order to advance diagnosis 
of ischemic stroke and access to tPA within the limited therapeutic 
period. Unfortunately, such tele-stroke medicine remains in infancy 
with significant health disparity between rural and urban stroke care 
contributing to small population of stroke patients benefitting from 
tPA  [11,12]. Investigations to small molecule therapies such as anti-
platelet drugs, anticoagulants and statins acting as prophylactics have 
not produced consistent benefit following an acute attack, whereas 
neuroprotective compounds such as albumin and minocycline are 
recently being explored in clinical trials [13,14]. Because tPA is already 
an FDA-approved drug, finding strategies designed to extend its 
therapeutic window seems a highly logical lab-to-clinic translational 
route for introducing a novel therapy for stroke. Hence, a potent 
research strategy that dovetails on tPA’s safety and efficacy profile, but 
also recognizes the drug’s limitation and adverse effects, may reveal 
new avenues of treatment for stroke. To this end, we advance the 
approach that cell therapy can abrogate the blood brain barrier (BBB) 
breakdown associated with tPA especially when given beyond the 4.5 

hours, and such BBB repair should extend tPA’s therapeutic window, 
as well as directly benefit stroke in view of the BBB damage inherent in 
the disease itself.

This paper discusses the preclinical basis for testing stem cell 
therapy in stroke. We outline below the potential of cell-based therapy 
in circumventing the current limitations and deleterious side effects 
of tPA for treating stroke. Finally, we address the gap in knowledge 
concerning mechanisms underlying the therapeutic benefit of stem 
cells in stroke. Here, we highlight the underexplored concept of 
neurovascular repair as a major mode of action of cell therapy, and 
emphasize the major role of endothelial progenitor cells (EPC) as an 
effective cell source for transplantation. Our strategy is to exploit this 
neurovascular repair mechanism via EPC transplantation as a stand-
alone or as an adjunct therapy for augmenting tPA treatment for stroke.

Stem Cell-based Therapy for Stroke
Several sources of stem cells have been demonstrated as safe and 

effective in animal models of stroke. Recently we reviewed various 
kinds of stem cell sources in detail  [15]. In a historical order, the 
major types of cells transplanted in stroke include fetal-derived cells, 
neuroteratocarcinoma cells (NT2N), xenogenic pig-derived cells, 
embryonic stem (ES) cells, adult stem cells (bone marrow, human 
umbilical cord, placenta, amnion fluid, menstrual blood), and induced 
pluripotent stem cells (iPS). Due to ethical and logistical concerns, 
the use of adult stem cells has flourished over the last decade, which 
was further aided by a moratorium for using federal funds on ES 
research.  Interestingly, the ongoing FDA-approved stem cell clinical 
trials in stroke use adult stem cells. For this section, we highlight the 
potential of adult bone marrow-derived endothelial progenitor cells in 
neurovascular repair for stroke.

Cell transplantation therapies and stem cell treatments have 
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emerged as potential treatments for numerous diseases and medical 
conditions, including stroke. One approach using stem cells involved 
the direct transplantation of neural stem cells (NSCs) into the damaged 
region of the brain. NSCs transplanted following transient global 
ischemia differentiated into neurons and improved spatial recognition 
in rats [16]. Post-mitotic neuron-like cells (NT2N) cells, derived from 
a human embryonal carcinoma cell line, migrated over long distances 
after implantation into brains of immuno-competent newborn mice and 
differentiated into neuron- and oligodendrocyte-like cells [17]. NT2N 
cells promoted functional recovery following focal cerebral ischemia 
after direct transplantation [18]. Similarly, MHP36 cells, a stem cell line 
derived from mouse neuroepithelium, improved functional outcome in 
rats after global ischemia [19] and also following focal cerebral ischemia 
or stroke [20]. NCSs grafted into brain developed morphological and 
electrophysiological characteristics of neurons [21].

Other direct transplantation experiments in the brain have 
utilized cells derived from bone marrow. Bone marrow stromal 
cells (MSCs), when injected into the lateral ventricle of the brain, 
migrated and differentiated into astrocytes  [22]. Fresh bone marrow 
transplanted directly into the ischemic boundary zone of rat 
brain improved functional recovery from middle cerebral artery 
occlusion  [23]. Similarly, MSCs implanted into the striatum of mice 
after stroke, improved functional recovery  [24]. MSCs differentiated 
into presumptive neurons in culture  [25] and assumed functional 
neuronal characteristics in embryonic rats  [26]. Intracerebral grafts 
of mouse bone marrow also facilitated restoration of cerebral blood 
flow and BBB after stroke in rats  [27]. Indirect transplant methods, 
via intravenous or intra-arterial injection, also have been shown 
to afford positive effects. Following bone marrow transplantation 
with tagged donor cells, tagged bone marrow stem cells were shown 
to differentiate into microglia and astrocytic-like cells  [28]. Intra-
carotid administration of MSCs following middle cerebral artery 
occlusion in a rat model improved functional outcome [29]. Similarly, 
intravenous administration of umbilical cord blood cells ameliorated 
functional deficits after stroke in rats  [30]. Rats, which had received 
tagged bone marrow cell transplantation, showed the tagged cells 
as putative neurons and endothelial cells following middle cerebral 
artery occlusion and reperfusion  [31]. It has also been reported that 
intravenous administration of cord blood cells was more effective than 
intra-striatal administration in producing functional benefit following 
stroke in rats [32]. Intravenous administration of MSCs has also been 
found to induce angiogenesis in the ischemic boundary zone following 
stroke in rats [33].

Cell Replacement and By-stander Effects of Stem Cell 
Grafts

It is unclear what brings about the purported benefit from stem 
cell transplantation. One possibility is the transformation of the 
transplanted cells into neurons  [34]. There appears to be a positive 
relationship between the degree of behavioral improvement and the 
number of transplanted cells that stain positive for neuron specific 
markers [16]. However, transplanted cells often do not develop normal 
processes, and thus the benefit may not be mediated only by neuronal 
circuitry [35].

A second hypothesis that is not mutually exclusive is that 
the transplanted cells may also assist via differentiation into 
neuroectodermal derived cell types other than neurons. Marrow 
stromal cells migrate and transform into astrocytes [22]. Hematopoietic 
cells can differentiate into microglia and macroglia [28]. Bone marrow 

derived stem cells may also assist in blood vessel regeneration following 
brain tissue damage in several ways. The stromal cell derived factor-1 
(SDF-1)/CXCR4 system assists in integration of cells into injured 
tissue by promoting the adhesion of CXCR4-positive cells onto 
vascular endothelium  [36]. SDF-1 also augments vasculogenesis and 
neo-vasculogenesis of ischemic tissue by recruitment of endothelial 
progenitor cells  [37]. Bone marrow is a source of these endothelial 
progenitors [38]. Adult bone marrow-derived cells have been shown to 
participate in angiogenesis by the formation of periendothelial vascular 
cells [39]. Intravenous administration of MSCs induced angiogenesis 
in the ischemic boundary zone after stroke [33]. We also observed that 
crude bone marrow is a source of endothelial cells after experimental 
stroke [31].

Trophic factors produced by the transplanted cells could be a 
factor. Via this mechanism, bone marrow grafts may assist in restoring 
brain blood flow and also repairing the BBB [27]. Trophic factors from 
marrow stromal cells may play a role in brain repair itself. Recent 
evidence suggests that intravenous administration of MSCs increases 
the expression of nerve growth factor and brain-derived neurotrophic 
factor following traumatic brain injury [40]. Understanding the exact 
mechanism(s) responsible for the therapeutic benefit seen following 
stem cell transplantation in the CNS is now at a critical junction in 
view of the planned FDA allowance for limited clinical trials of bone 
marrow-derived multipotent adult progenitor cells in acute ischemic 
stroke [41].

In accordance with the STAIR (Stroke Therapy Academic Industry 
Roundtable) and STEPS (Stem cell Therapeutics as an Emerging 
Paradigm for Stroke) criteria, investigations of the mechanism of action 
mediating experimental therapeutics in stroke are vital for extending 
their potential clinical utility [42,43]. 

An Underexplored Stroke Therapeutic Target: BBB 
repair

A closely associated cell death cascade involved in stroke 
pathogenesis is impairment of the BBB, which further exacerbates 
brain damage. The central nervous system (CNS) is an immunologically 
privileged zone, protected from entry of immune cells and serum 
proteins by the BBB (as well as by the blood-spinal cord barrier and 
blood-cerebrospinal fluid barrier, but we will focus here on BBB). 
These CNS barriers control cerebral/spinal cord homeostasis by 
selective transport of molecules and cells  [38-40,44,45]. This control 
is possible due to the unique structure of the microvasculature – in 
particular capillaries formed by endothelial cells which are connected 
via adherens and tight junctions  [46-48]. Functional integrity of 
all BBB elements is critical for protection of the CNS from harmful 
blood substances. Impairment of this cellular machinery may cause 
BBB breakdown, leading to edema in many cases of brain diseases 
or injuries, including stroke. Degradation of the extracellular matrix 
may be concomitant with BBB disruption and tissue softening, leading 
to more pronounced brain swelling and to severe cerebral edema in 
stroke patients  [49] and other brain disorders such as Alzheimer’s 
disease [50] and multiple sclerosis [51,52]. Examination of BBB status 
in stroke reveals evidence of the barrier’s altered permeability. Whereas 
the first phase of stroke is characterized by a surge in tissue Na+ and 
water content concomitant with an increased pinocytosis and Na+, 
K+ ATPase activity across the endothelium, the second stage of stroke 
ensues with BBB breakdown that is associated with infarction of both 
the parenchyma and the vasculature itself  [53]. At this second stage, 
tissue Na+ level still remains, but the extravasation of serum proteases 
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stands as a likely exacerbating factor  [54]. Accumulating evidence 
implicates serum proteases in degradation of the extracellular matrix 
metalloproteinases (MMPs), which in turn aggravate BBB disruption 
and softening of the tissue, eventually manifesting into a well-defined 
form of brain swelling [53-55]. Part of the reason for the tPA’s limited 
time window is that the surge in production of free radicals associated 
with delayed reperfusion brings a second wave of oxidative and nitrative 
stress that increases the risk of brain hemorrhage and edema  [56]. 
With delayed reperfusion, there is a surge in production of superoxide, 
NO, and peroxynitrate. Formation of these radicals in the vicinity of 
blood vessels plays an important role in reperfusion-induced injury. 
These radicals activate MMPs, which degrade collagen and laminin in 
the basal lamina, disrupting the integrity of the basement membrane 
and increasing BBB permeability. Oxidative and nitrative stress also 
triggers recruitment and migration of neutrophils and other leukocytes 
to the cerebral vasculature, which release enzymes that further increase 
basal lamina degradation and vascular permeability. These BBB 
pathological events can lead to parenchymal hemorrhage, vasogenic 
brain edema, and neutrophil infiltration into the brain  [57]. In the 
clinic, significant brain edema, such as that seen in malignant MCA 
infarction, develops in a delayed fashion after large hemispheric strokes 
and accounts for a high mortality rate (80% in the case of malignant 
MCA infarction)  [58]. The primary BBB function is controlling CNS 
homeostasis by selective transport. Substances with molecular weights 
higher than 400 Da generally cannot cross the BBB by free diffusion. 
Some molecules cross the barriers via endothelial carrier-mediated or 
receptor-mediated transporters, see review [38,39,44,59]. It is possible 
that barrier disruption or dysfunction occurs in stroke, altering 
CNS homeostasis and allowing entry of harmful molecules from the 
periphery to the brain [60-62]. Among these injurious molecules are 
immune/ inflammatory factors, such as monocyte/macrophage cells, 
activated microglia, and reactive astrocytes possibly secreting pro-
inflammatory cytokines, which have been detected in stroke patients 
and animal models [63-65]. Although additional studies are warranted 
to confirm the BBB status in stroke patients, the above results taken 
together imply that BBB dysfunction may contribute to stroke 
pathology. Thus, there could be an impaired endothelium-mediated 
mechanism in stroke leading to barrier dysfunction.

EPC Therapy for BBB Repair in Stroke
Endothelial progenitor cells (EPCs), initially described by Asahara 

et al.  [66] are immature endothelial cells that circulate in peripheral 
blood. In their pioneering study, transplanted EPCs, isolated from 
human blood, were found in the endothelium of newly formed vessels 
in ischemic regions, indicating that a discrete cell population within 
the human blood participates in the formation of new vessels after 
ischemia. Griese et al.  [67] also found that grafted EPCs populated 
the endothelium in animals with experimentally induced endothelial 
damage, further advancing the notion that EPCs contribute to the 
repair of damaged endothelium. The dogma that existed until recently 
is that neovascularization, or formation of new blood vessels, results 
exclusively from proliferation and migration of pre-existing endothelial 
cells, a process referred as to angiogenesis  [68]. Furthermore, 
vasculogenesis or vascularization, defined as in situ differentiation 
of vascular endothelial cells from endothelial precursor cells, was 
thought to occur only in the embryo during vascular development. 
However, recent evidence has now established that circulating bone 
marrow-derived EPCs are capable of homing to neovascularization 
sites, proliferating, and differentiating into endothelial cells  [69,70]. 
EPCs have been identified mainly in the mononuclear cell fraction 
of peripheral blood, leukapheresis products, and in umbilical cord 

blood  [66,71], but can also be harvested from bone marrow. Over 
the last few years, EPCs have been studied as biomarkers to assess 
the risk of cardiovascular disease in human subjects. For example, 
a low EPC count predicts severe functional impairments in several 
cardiovascular pathologies such as diabetes [72], hypertension [73,74], 
scleroderma [75,76], aging [74,77], cigarettes smoking [74,78,79], and 
coronary artery disease [46]. In addition, EPCs have been examined as 
potent donor graft cells for transplantation therapy.

Transplantation of EPCs into ischemic tissues has emerged as a 
promising approach in the treatment of diseases with blood vessels 
disorders [80-82]. In mouse models of ischemic injury, EPCs injection 
led to improved neovascularization in hind limb ischemia  [80-82]. 
Based largely on these laboratory findings suggesting angiogenic and 
vasculogenic potential of EPCs, clinical studies have been initiated to 
reveal whether patients with lower EPC numbers are at higher risk for 
atherosclerotic events, and whether patients with ischemic events may 
benefit from EPC administration [83].

Clinical studies to date suggest the therapeutic potential of EPC 
transplantation, although this assumption should be approached 
with much caution due to being open label trials, observational and/
or anecdotal accounts, and limited number of patients. Ex vivo 
expanded EPCs, isolated from peripheral blood mononuclear cells, can 
incorporate into the foci of myocardial neovascularization [84,85], and 
intracoronary infusion of peripheral blood or bone marrow-derived 
progenitors in patients with acute myocardial infarction was associated 
with significant benefits in post-infarction remodeling [86-93]. Still in 
observational studies in patients with myocardial infarction, higher 
numbers of EPC correlate with better prognosis, more myocardial 
salvage [94], viability and perfusion [95], and more collaterals in the 
ischemic zone  [96]. Randomized clinical trials on autologous bone 
marrow-derived cells are mixed; whereas transplanted coronary artery 
disease patients display improved left ventricular function at least 
in the short term  [97], transplanted patients with chronic ischemic 
heart failure exhibit modest to no effects on change in left ventricular 
function [98].

Similar randomized trials of autologous bone marrow-derived 
cells have been carried out in patients with peripheral artery disease 
and showed improved endothelium-dependent vasodilation  [99], 
ankle brachial index, rest pain, and pain-free walking time [100], but 
the degree of functional recovery was not as robust as seen in animal 
models. Clearly, these results are obtained from autologous bone 
marrow-derived cells, which are heterogenous with scarce number of 
EPCs, thus may not closely approximate EPC endpoints. For clinical 
application of EPCs in neurovascular disease, the available studies 
are much more limited with only 3 observational studies in patients 
with stroke. In 25 patients with an ischemic stroke, CD34+ cells 
peaked 7 days after stroke but generally reverted to baseline after 30 
days  [101]. Interestingly, higher CD34+ cell levels at 30 days related 
to higher numbers of infarcts on magnetic resonance imaging and 
also to cerebrovascular function as measured with positron emission 
tomography scanning (cerebral metabolic rate of oxygen, and cerebral 
blood flow). On the other hand, decreased numbers of clusters of rapidly 
adhering cells were seen after stroke and in “stable cerebrovascular 
disease,” compared to controls free of vascular disease [102]. Higher age 
and the presence of cerebrovascular disease in general independently 
related to lower EPC numbers. The discrepancies in the results of these 
studies may be due to mismatched controls for age of patients and/
or the lack of methodological design for testing specific hypotheses on 
the causal role of EPC in cerebrovascular disease [102]. Although the 
primary mitigating mechanisms underlying stroke pathogenesis and 
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its abrogation by cell therapy are still uncertain, there is substantial 
evidence implicating immunological attack upon the brain and/or its 
vasculature; widespread inflammatory reactions in stroke may trigger 
a cascade of events which alter the integrity of the BBB, resulting in 
migration of leukocytes into the CNS. Leukocyte transmigration 
across the BBB during stroke immune/inflammatory processes could 
influence inter-endothelial junctional complex function leading to 
vascular endothelium damage and BBB breakdown. Equally a key 
component to our mechanism-based thesis is that disruption or 
dysfunction of the BBB, preceding entry of harmful substances into the 
brain parenchyma, could be a key initial factor in stroke pathogenesis. 
Thus, restoration of barrier integrity may have a critical role in 
preventing stroke progression. Our studies have begun to address 
these questions, particularly, whether endothelial cell replacement can 
restore structural and functional properties of the BBB after stroke. 
Results of this study will provide the basis for pursuing cell therapy 
both for non-tPA and tPA-treated ischemic stroke patients, as well as 
for patients with neurodegenerative disorders characterized by BBB 
dysfunction.

Conclusion
The recognition that t-PA may exacerbate the breakdown of the 

already vulnerable BBB warrants therapies designed to arrest this 
BBB dysfunction. Currently, much of the stroke therapy implemented 
does not consider the capacity of BBB damage after stroke. It is our 
contention that if EPC transplantation promotes restoration of the 
vascular endothelium, the clinical effects could be far reaching and 
substantially help a large population of patients that may be excluded 
from the current therapeutic window guideline for tPA. Although a 
plethora of accumulating stem cell research is quickly translating into 
clinical trials, it is important to gain insights into the mechanisms of 
action, which will aid in optimizing the safety and efficacy of these stem 
cells in stroke. There are almost 800,00 stroke cases yearly in the USA 
but less than 3 percent of these patients benefit from tPA treatment, due 
to the drug’s narrow therapeutic window and its detrimental side effects 
that can exacerbate stroke injury and counteract the benefits provided 
by reperfusion of the occluded artery. Accumulating evidence indicates 
that tPA-induced neurotoxicity may contribute to BBB breakdown 
and neuronal injury in the acute phase after stroke. BBB damage may 
result in the formation of severe brain edema over subsequent hours 
and days in stroke patients. This damage could negatively influence the 
CNS regenerative processes after stroke. Accordingly, any treatment 
regimen directed at attenuating stroke deficits should consider the 
pivotal role of BBB repair in order to maintain CNS homeostasis 
and enhance neuronal regeneration. In summary, structurally and 
functionally restoring the BBB in an acute and sub-acute stroke 
setting may afford therapeutic benefits against stroke. A regenerative 
mechanism involving the repair of the damaged BBB by EPC is critical 
to the successful outcome of cell therapy in stroke. Cell therapy tailored 
at EPC recruitment and/or directed secretion of EPC-soluble factors 
into the stroke brain stands as a potent strategy for BBB repair in stroke.
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