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Abstract
The collective Protein:Protein Interactions (PPI) of a cell are thought to represent a system with emergent network 

properties that integrate signals from a multiplicity of inputs into coordinated responses. It is hypothesized that the 
PPI network supplies both specificity for many distinct signals that utilize common intermediate pathways, and also 
robustness by allowing specific signals to be communicated by alternate routes. Progress with genetic networks 
points to these concepts, but the extent to which PPI networks possess these properties has not been empirically 
tested, due to lack of quantitative data needed for such assessments. Here, a hypothetical physiologic PPI network is 
used to illustrate how signaling robustness and specificity could be manifest under conditions of (i) deletion mutation, 
or (ii) changes in signaling due to variation in environmental conditions or stimuli. It is proposed that advances in 
technology enabling empirical analysis of PPI network principles will have the potential to significantly impact basic 
understanding of signaling mechanisms, and contribute to the generation of novel applications in drug screening and 
pharmacology.
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Signal Specificity Through Protein:Protein Interaction 
(PPI) Networks

A basic aspect of cell physiology involves the ability to generate 
specific responses to specific stimuli via signal transduction. The 
principle that receptor:ligand interactions recognize and initiate these 
specific signals is well established. However, it is much less clear how 
the immediate next step in the process, participation of intracellular 
intermediates, communicates the specificity of the original interaction 
to produce the ‘correct’ cellular response. In principle, this could be 
achieved via receptor-customized intracellular intermediates that 
would specialize in transmitting signals exclusively for specific pathways 
(Figure1i). Notch1 exemplifies this type of signaling: upon binding and 
activation by an extracellular ligand, Notch1 undergoes cleavage and 
liberation of the Intracellular Domain (ICN), which translocates to 
the nucleus and effects transcriptional activation [1]. However, most 
intracellular signal transduction is carried out by intermediates that 
are common to multiple biochemical pathways (Figure1ii) [2]. For 
example, activation of ERK and p38 MAPK and associated pathways 
occurs in response to many different receptors [3,4]. For a cell 
functioning in vivo and in situ, a multitude of simultaneous cellular 
signals must be integrated into seamless, unified, non-contradictory 
responses. This generates the conceptual problem of how common 
intermediates can be utilized to communicate different specific signals, 
without mistaking information between different pathways that may or 
may not be concurrently active.

It has been hypothesized that the solution to this problem may 
largely reside in the protein- protein interaction (PPI) network 
[5], which is thought to incorporate all of the genetically encoded 
biochemistry in a cell [6]. In this network model of signal specificity, 
PPI constitute a biochemical ‘language’, in which proteins are members 
of an ‘alphabet’ that in joining together form ‘words’ instructing the 
cell to perform functions. Because many different PPI from different 
biochemical pathways occur simultaneously, cellular decisions 
are thought to rely on network principles that would integrate the 
qualitative and quantitative PPI-mediated signals, and translate them 
into specific responses.

PPI Network Robustness and the Central-Lethality Rule
To understand how the PPI network might organize and direct 

many different signals, we must first consider the mechanisms by which 

it is predicted to transmit individual signals. A network can display 
emergent, synergistic properties that do not entirely account for by the 
individual contributions of its members. According to network theory, 
the PPI network is expected to display robustness, which describes a 
network’s stability in the face of changes to its members (individual 
proteins) or their functions [7,8]. Figure 2 displays two hypothetical 
PPI networks (Figure 2i and 2ii, top panels), each composed of 15 
interactions (‘edges’) between 14 members (‘nodes’ A-N), including 
4 receptors (initiators of signaling pathways, denoted as ‘peripheral 
nodes’ A- D), 1 protein with many interaction partners (‘hub’, K), and 
1 goal partner (M), whose interaction induces a function. Except for 
three differences among the 15 interactions (edges), the two networks 
are otherwise identical. Hypothetically, if the gene for the hub protein, 
K, were deleted (Figure 2, bottom panels), this would eliminate the 
network’s ability to reach the goal (M) from any receptor in Figure 2i, 
but not Figure 2ii. Thus, the network in Figure 2ii is the most robust 
under this specific condition.

Experiments, mostly in the yeast Saccharomyces cerevisiae, have 
demonstrated that genetic deletion of protein hubs results in lethality 
more often than deletion of non-hub proteins, and this has become 
known as the central-lethality rule [9]. This may be partly explained in 
probabilistic terms. Because hubs participate in many more PPI than 
do average proteins, hubs might display an increased tendency to be 
involved in specific essential PPI that are required for cellular life [10]. 
However, it is thought that the network activity of hubs also contributes 
to their preferential essentiality. Hubs play a critical role in mediating 
communication within and between signaling pathways, as sub-centers 
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of the many connections that together determine a network’s topology/
connectivity. Therefore, deletion of a hub is thought to create a severe 
hole in the network that often cannot be bypassed by compensatory 
pathways [11,12]. The idea that the network activity of the genes 
encoding PPI hubs tends to be essential for cellular life is consistent 
with the hypothesis that there is a significant network component to 
PPI function.

Redundant vs. Distributed Mechanisms of Network 
Robustness

Null mutation of any one of approximately 80% of yeast genes in 
S. cerevisiae was shown to bear no consequence for viability or growth 
rate in multiple different environments [13-15]. It is not thought that 
80% of the yeast genome makes no contribution to the viability or 
growth rate; rather that the robustness of the genetic network allows 
compensatory mechanisms to sustain essential signals when one of 
the majorities of genes is lost. Subsequent studies showed that only a 
small fraction of this compensation were due to genetic redundancy, 
where a closely related family member performs the activity of the 
missing gene. Surprisingly, most of the compensation was due to 
distributed robustness, where unrelated genes diminish the phenotypic 
consequences of the network alteration [16,17]. Further work showed 
that a vast collection of chemical and environmental stress conditions 
could be identified in which nearly all genes were required for optimal 
growth in at least one condition, illustrating that the minimal genetic 
complement required for life was not equal to that which provided 
optimal/maximal function in a potentially variable environment [18]. 
Thus, in the yeast genome, genes display functional specificity, but the 
plasticity in the network allows some genes (or collections of genes) 
to compensate function when other network members are mutated 
[19,20].

Interestingly, in mice, the percent of knockout mutations in 
protein-encoding genes compatible with mouse viability has been 
estimated to be very close to that of yeast, ~80% [21]. Although not 
quantified, common experience dictates that many genetic knockouts 
display no phenotype, sometimes despite other experimental evidence 
that these genes perform specific functions [19,22]. Because of 
these and other examples and analyses, mutational robustness are 
considered a network property inherent to genomes [8]. In this regard, 
an outstanding issue of great interest emerges, whose resolution is 
severely limited by current technical and analytical capabilities: to 
what extent does genetic network robustness function directly through 

PPI network robustness, vs. through other genetic, epigenetic, and/or 
genomic mechanisms?

Toward Physiologic PPI Network Analysis of 
Robustness and Signal Specificity

The current battery of protein interaction methodologies is 
designed to report and archive binary PPI data, wherein the presence 
or absence of interaction between two specific proteins is noted [23]. 
Well-known strategies with which to approach PPI experiments 
include Glutathione S-Transferase (GST)-fusion protein pull-down 
(PD) [24], co-Immunoprecipitation (IP) with subsequent Western 
blotting [25] or mass spectrometry-based identification of binding 
partners [26,27], Blue Native-Polyacrylamide Gel Electrophoresis 
(BN-PAGE) [28], Fluorescence Resonance Energy Transfer (FRET) 
[29], and yeast two-hybrid [30]. The binary data thus generated can 
be retrieved from databases and assembled into PPI network maps, 
large and smallest of various scales, but similar in concept to Figure 2. 
However, PPI network analysis lags behind genetic network analysis 
platforms because of the lack of quantitative data obtainable under 
physiologic conditions. Therefore, current state-of-the-art PPI maps 
constructed from archived data display possible PPI, in the same 
way a highway map shows roads, but not traffic/activity. Significant 
advances are needed to generate the technological and analytical 
ability to quantify large collections of PPI and reveal the extent to 
which they actually occur under specific physiological conditions 
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Figure 1: Two distinct mechanisms to achieve signal specificity. (i) Two 
unique cellular signals (x,y) are transmitted via their own unique receptors 
(R) and intermediates (I), to effect distinct cellular functions (F). (ii) Signals 
x and y are transmitted through unique receptors, but they use common 
intermediates to effect unique functions.
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Figure 2: Two hypothetical physiologic PPI networks display distinct 
robustness upon deletion of a hub. Two examples (i-ii) of node-edge 
diagrams for a hypothetical physiologic PPI network. (Top panels) Networks 
(i) and (ii) are identical except for 3 differences among the 15 interactions 
(edges) possessed by each. (Bottom panels) The consequence to each 
network upon genetic deletion of the gene encoding the protein for hub, K.
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in primary cells [31]. Figure 3 illustrates what such data might look 
like on a small scale, if the technology existed to generate it, for the 
same hypothetical PPI network shown previously. The possible PPI 
representing current data capabilities is shown in grey, overlaid with 
physiologic quantification data in blue that indicates the PPI level 
under a specific condition. First, physiologic conditions can control 
which proteins (nodes) are present due to differential gene expression 
and other post-transcriptional mechanisms of protein abundance. In 
Figure 3, this is evident because of all the proteins that could potentially 
participate in PPI (grey with no blue overlay), only a subset is present 
under this hypothetical physiological condition (blue overlay). Second, 
PPI is subject to a plethora of regulatory processes in vivo: competition 
between multiple ligands, sequestration, compartmentalization, 
glycosylation, allosterism, binding site alteration (phosphorylation, 
de-phosphorylation, ubiquitination), and others. Therefore, it is easily 
imagined that in one physiological condition a PPI might be engaged 
(Figure 3, top panel), while under different conditions that PPI may not 
occur (Figure 3, bottom panel, showing lack of the PPI, E:F).

Here, it will be illustrated how measuring the changes in the 
quantity of an interaction between protein pairs could reveal 
physiologic PPI signatures of network robustness and signal specificity. 
Under one hypothetical physiologic condition (Figure 3, top), both B 
and D pathways lead to recruitment of F, and therefore the quantity 
of signal from F to the goal M is high. However under the second 
hypothetical physiologic condition (Figure 3, bottom) where BCE 
forms a constitutive complex that inhibits formation of E:F, only 
receptor D continues to signal to M. The signal from F to M might be 
reduced due to the lack of input from the B pathway (not shown); but 
alternatively, loss of E:F might liberate more F to interact between G 
and K, enhancing the total signal strength through D to compensate 
for the lack of signaling through B. Thus, summarizing both Figures 2 
and 3, the receptors A-D share signaling specificity for M through a PPI 
network involving shared intermediates. Network robustness depends 
on the distribution of connectivity [32] (Figure 2), and the plasticity 
of signaling strength determined through multiple pathways (Figure 
3). The degree to which the proteins (nodes) involved originate from 
related vs. unrelated genes would determine the role of redundant vs. 
distributed mechanisms of robustness.

Extending the Reach of Technology to Profile 
Physiologic PPI Networks in Health and Disease

The summation of all possible PPI and other molecular 
interactions is collectively termed the ‘interactome’ [33]. As a field 
of study, Interactomics represents a frontier in which progress is 
currently limited by both assay and analytical tools, to a degree 
beyond that which applies to Genomics or Proteomics [34]. Whereas 
these latter fields focus mostly on the identity and expression level 
of molecular species, the output information of these sciences is the 
input information for Interactomics. A complete Interactomic profile, 
which does not yet exist, would measure all possible combinations of 
interactions between molecules as reported by other ‘omics’ methods, 
and add exponential matrix-level interaction complexity that would be 
considerably more data-intensive than either Genomics or Proteomics 
parent sciences. In practice, such a level of interaction profiling is not 
realistically imminent. However, to progress in this direction, there 
is great interest in the generation of assay and analytical tools that 
improve the accessibility of molecular interactions to experimentation, 
diagnosis, pharmacology, and medicine [33,34].

A central rationale for the pursuit of improved Interactomic 

technologies is that PPI engagement/activity is likely distinct in healthy 
vs. diseased states, since PPI relay the signals that may be associated 
with these opposite outcomes. To better understand these signals, the 
field needs technologies with better capabilities to observe large swaths 
of PPI networks, ideally from samples as small as those routinely 
obtained in the clinic. Two of the most promising technological avenues 
in this regard involve Mass Spectrometry (MS) and microsphere-based 
PPI analysis. Recent studies using MS produced the first quantitative 
estimate of a proteomic signature for a human cell line, by coupling 
empirical protein quantification strategies with computational and 
statistical modeling [35]. Applying this level of protein quantification 
to protein interaction quantities will not be trivial, and will represent 
a significant advance toward physiologic network PPI analysis. 
Meanwhile, other recent experiments have begun to approach PPI 
measurement using high-sensitivity ELISA-style methodology via 
singleplex or multiplex microspheres [36-40]. The strength of this 
latter approach lies in its compatibility with small-volume samples 
from primary tissue sources including patient samples, as well as 
high-throughput multi-well formatting and potential applicability 
to drug screening. Further development of both MS and multiplex 
microsphere-based strategies is likely to prove the unique strengths of 
both approaches to be complementary. If MS could be used to identify 
the most comprehensive Interactomic PPI set possible, then that could 
inform the composition of smaller-scale multiplex microsphere-based 
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Figure 3: Robustness and signal specificity revealed when quantitative 
PPI information contributes to PPI network analysis. (Top panel) Binary 
PPI data provides the network of all known possible interactions for this 
hypothetical PPI network, previously shown in Figure 2i (gray). Empirical, 
quantitative physiologic PPI information is overlaid (blue). (Bottom panel) 
One possible consequence to the network upon prevention or removal of 
the specific PPI, E:F.
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micro-assays whose current maximum is limited to ~500 primary 
analytes. Those MS-informed high-sensitivity multiplex PPI assays 
could be used to target specific signaling pathways, to visualize relevant 
subsets of PPI networks in patient samples, or to design drug screening 
strategies that evaluate effects on large collections of PPI instead of 
single protein activities.

Concluding Remarks
Considering the PPI that mediates signal transduction from 

a network biology perspective provides a model for how cellular 
biochemistry may control signal robustness and specificity. Progress 
in understanding gene networks supplies a template for the concepts 
hypothesized to emerge from physiologic PPI networks, including 
potentially significant roles in signal transduction for redundant 
vs. distributed mechanisms of robustness. The achievement of new 
advances in technology to enable physiologic network PPI analysis may 
not only lead to increased understanding of signalling mechanisms, 
but also provides network PPI profile for clinical medicine, and new 
experimental platforms for drug discovery and pharmacology.
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