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Abstract
In a past study, we developed multiple linear regression (MLR) models that employed three single nucleotide 

polymorphisms (SNPs) that predicted a significant proportion of variation in pigmentation phenotypes from a large 
population cohort (n=789, training sample). Multiple linear regression models were developed for skin reflectance, 
eye color, and two aspects of hair color (log of the ratio of eumelanin-to-pheomelanin and total melanin). In this re-
port, using an independent cohort (n=242 , test sample), we 1) externally cross-validated the prediction models, and 
2) tested and refined the algorithm presented in the study by Valenzuela and colleagues, (2010). Relative shrinkage
was moderate for skin reflectance (23.4%), eye color (19.4%), and the log of the ratio of eumelanin-to-pheomelanin
in hair (37.3%), and largest for total melanin (67%) in hair. Independent construction of predictive models using our
algorithm for the test sample set yielded the same or similar models as the training sample set. Two of the three
SNPs composing the models were the same, with some variability in the third SNP of the model.

Keywords: Forensic Science; Genetics; Human; Pigmentation;
Prediction Models; QTL

Background
According to the Federal Bureau of Investigation (FBI) Laboratory’s 

Combined DNA Index System (CODIS) – National DNA Index 
System (NDIS) statistics (http://www.fbi.gov/hq/lab/codis/clickmap.
htm), there are significantly more unmatched profiles than there are 
matched profiles. Ancestry informative markers (AIMs) can be helpful 
in reducing the pool of suspects. However, a more efficient means 
of reducing a pool of suspects is to predict an unmatched profile’s 
phenotype based on their genetic information. Forensically informative 
phenotypes include skin, eye, and hair color. The appearances of these 
traits are largely influenced by pigmentation, which is a quantitative 
trait controlled by many genetic loci.

In developing prediction models, interpretation of correlated 
genetic variants can be confounded by population stratification. When 
population stratification is not accounted for, erroneous inferences of 
a gene’s involvement, and therefore false inferences of the biology of 
a trait, may be made. Clearly, accounting for population stratification 
is important in determining the biology of a trait. Correlation of a 
genetic marker to a trait may result if the marker is the causal variant 
that presumably affects the expression/function of a gene, if the 
marker is closely linked to a causal variant, or as a result of population 
stratification. Confounding genetic associations are markers that co-
segregate with a trait that varies between populations, allele frequency 
differences are haphazardly associated with a trait due to unique 
evolutionary histories of each population. Therefore, by definition, 
ancestry informative markers (AIMs) are confounding associations 
with respect to a given trait in most instances. However, multiple 
studies have demonstrated that specific AIMs that are associated with 
melanin pigmentation are functional [1-3].

Melanin is the main pigment responsible for skin, eye, and hair 
color. Variation in a number of genes, including the melanocortin 1 
receptor (MC1R), agouti-signaling protein (ASIP), oculocutaneous 
albinism 2 (OCA2), solute-carrier transport protein 45A2 (SLC45A2), 
and solute-carrier transport protein 24A5 (SLC24A5), have been 
associated with pigmentation. Functional and bioinformatics 

analyses support the biological role of variants (rs1805007, rs2424984, 
rs12913832, rs16891982, and rs1426654) associated with these genes.

The melanocortin 1 receptor (MC1R), a seven transmembrane G-
protein coupled receptor located in the membrane of epidermal and 
follicular melanocytes, is a key protein involved in the regulation of 
melanin production (reviewed in [4]). Ligands of MC1R include the 
paracrine hormones, alpha-melanocyte stimulating hormone (α-MSH) 
and adrenocorticotropic hormone; both are produced in the keratino-
cytes associated with the melanocyte. They are derived from the pre-
cursor protein, proopiomelanocortin (POMC) (reviewed in [5]). The 
binding of α-MSH to MC1R causes a cAMP signal cascade resulting 
in an increased production of eumelanin. Non-synonymous SNPs, in-
cluding rs1805007, used in this study, have been associated with red 
hair and fair skin [4,6]. Functional and bioinformatics studies have 
demonstrated that SNP rs1805007 alters the function of MC1R [7-9], 
and hence, melanin production. 

The protein antagonist to signaling through MC1R is agouti-
signaling protein (ASIP). The antagonistic action of ASIP results in 
a relative decrease in the production of eumelanin to pheomelanin 
(reviewed in [10]). Hence, MC1R acts as a switch between the two types of 
melanin for skin and hair melanoctyes. Several polymorphisms, within 
ASIP, including rs6058017 and rs2424984, have been associated with 
pigmentation variation. The rs6058017 polymorphism located within 
the 3’ un-translated region (UTR) of the ASIP has been associated with 
normal human pigmentation variation of the skin [10-12], hair [11], 
and eyes [11,13]. In particular, the G allele is associated with increased 
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eumelanin. The G allele is postulated to decrease the stability of the 
mRNA transcript, resulting in a decrease in ASIP, and consequently, 
a decrease in the antagonistic action on α-MSH. Additionally, a less 
studied polymorphism located within the vicinity of a conserved region 
of intron 1, rs2424984, was found to be more significantly associated 
with skin pigmentation variation across various populations compared 
to rs6058017 [14]. According to the National Center for Biotechnology 
Information (NCBI) website, there is a large difference (approximately 
50%) in allele frequency of variants of rs2424984 between Blacks and 
non-Blacks. Hence, due to its large allele frequency differences between 
Blacks and non-Black populations, it may also be considered an AIM.

Many studies have shown that the putative transmembrane 
proteins OCA2, SLC45A2 (OCA4) (solute carrier transport protein, 
family 24, member 5; also called NCKX4), and SLC24A5 are essential 
for melanin production and are likely involved in regulating ion 
transport. Variation within these genes has been associated with 
variation in pigmentation. SLC45A2 and OCA2 have been localized to 
the melanosome surface [15,16], while studies have been conflicting on 
the locality of SLC24A5 [cf. [3,17]].

The OCA2 gene codes for a putative 12 trans-membrane protein 
[15]. The OCA2 protein has homology with anion transporters and 
is thought to be involved in influencing the pH of the melanosome 
[18-20], and either directly or indirectly involved in the trafficking of 
internal melanosomal proteins, tyrosinase (TYR) and tyrinosinase-
related protein 1 (TYRP1) [21]. Polymorphisms of OCA2 have been 
associated with skin, hair, and eye color variation. The strongest genetic 
variant associated with OCA2 and eye color variation is rs12913832. 
This variant lies in an evolutionary conserved region of an intron of an 
adjacent gene (HERC2) located immediately upstream of OCA2 and it 
has been hypothesized to be within a promoter region of OCA2 [22]. 
In skin melanocytes, Cook et al. [2] found that the non-blue eye color 
variant of rs12913832 was associated with increased transcript levels 
of OCA2, supporting the hypothesis that rs12913832 is located within 
a promoter region of OCA2 [2]. According to the National Center for 
Biotechnology Information (NCBI) website, the blue eye color variant 
has a frequency of approximately 80% in Whites, while in non-White 
populations, it is virtually non-existent. Hence, due to its large allele 
frequency differences between White and non-White populations, it 
may be considered an AIM. However, in this case, rs12913832 is also a 
functional variant.

SLC45A2 (OCA4, formerly known as MATP and AIM1) is a 
putative melanosomal membrane transport protein that is predicted 
to have 12 trans-membrane regions [16] localized to the melanosome 
[17]. SLC45A2 has regions that are similar to sucrose symporters 
in plants, and because of this it has been hypothesized to regulate 
osmosis by transporting sugar across the melanosome membrane 
[16]. In humans, Cook et al. [2] found that there was a greater amount 
of tyrosinase (TYR) associated with the dark-skin allele (374L) in 
melanocytes. Interestingly, they also found lower mRNA expression 
levels of samples homozygous for 374L. Non-synonymous genetic 
polymorphisms of SLC45A2 (OCA4) that have been associated with 
pigmentation variation are rs16891982 (F374L) and rs26722 (E272K) 
[23,24]. The light-skin allele, 374F, decreases in frequency along a cline 
from northwest Europe to southeast Europe [25-27]. According to 
NCBI, the “light” allele of rs16891982 is present at very high frequency 
(i.e., >97%) in White populations. Similarly, in non-White populations, 
the “dark” allele is present in very high frequencies. Hence, rs16891982 

is a functional AIM for melanin pigmentation.

Another important pigmentation gene, SLC24A5 (formerly known 
as NCKX5), was found to cause the golden phenotype in zebrafish [1]. 
The main genetic variant of SLC24A5 associated with pigmentation 
variation is rs1426654 (A111T) [1]. SLC24A5 was predicted to be 
a cation exchanger that transports Ca2+/K+, in exchange for Na+ [1], 
and more recently this function has been confirmed [3]. Lamason 
et al. [1] found that SLC24A5 was located on melanosomes or their 
precursors and hypothesized that it might function to accumulate 
Ca2+ into the melanosome [1]. Chi et al. [17] isolated SL24A5 in 
melanosomal fractions and proposed that it functioned on the surface 
of melanosomes [17]. Whereas, Ginger et al. [3] found SLC24A5 to be 
associated with the trans-golgi network [3]. They also found that the 
allele associated with darker skin, 111A, of SNP rs1426654 had a higher 
ion exchange activity compared to the allele associated with lighter 
skin, 111T. They hypothesized that SLC24A5 functions in regulating 
Ca2+ concentrations in endosomes, and that this affects delivery of 
melanosomal proteins (such as PMEL17), and hence, melanosome 
maturation. SLC24A5 may explain an earlier study demonstrating high 
Ca2+ concentrations in melanosomes [28]. The 111T allele was found 
to be almost fixed in European populations, while the 111A allele was 
found to be almost fixed in African and East Asian populations [1]. 
Hence, rs1426654 is a functional AIM for melanin pigmentation.

In our previous paper, we addressed the problem of constructing 
forensic models for skin, eye, and hair pigmentation by developing 
models using an ethnically diverse sample. The prediction models were 
comprised of SNPs that have been shown either through functional 
or bioinformatic analyses to be causal variants. To determine the 
performance of the models we developed [14], we report here the cross-
validation of the pigmentation prediction models using an independent 
and ethnically diverse sample (test sample). We also corroborated the 
results of this algorithm (i.e., the models determined by the training 
sample) by applying the previously developed method to the test sample. 
Finally, we refined the algorithm and present a procedure that allows 
dynamic analysis of various SNP models and their R2-curve inflections. 
This dynamic analysis allows us to observe the individual components 
(SNPs) of each possible model. This has facilitated the identification 
of more robust genetic models for describing pigmentation variation 
across various ethnicities.

Materials and Methods
Phenotype data, hair samples, and buccal cell samples were collected 

from each participant following Institutional Review Board approval of 
the protocol. Participants, phenotype measurements, and mathematical 
modeling have been described elsewhere [14], with the exception of 
the hair-melanin chemical analysis. The test sample’s hair eumelanin 
chemical analysis was performed using a minor variation (an alkaline 
peroxide oxidation method rather than the acidic permanganate 
oxidation method that was used for the training sample) of the chemical 
analysis described elsewhere [29]. Briefly, sample homogenate (100 µL) 
was taken in a 10 ml screw-capped conical test tube, to which 375 µL 
1 mol/L K2CO3 and 25 µL 30% H2O2 (final concentration: 1.5%) were 
added [30], and then mixed vigorously at room temperature for 20 
hr. The residual H2O2 was decomposed by the addition of 50 µL 10% 
Na2SO3, and the mixture was then acidified with 140 µL 6 mol/L HCl. 
After vortex-mixing, the reaction mixture was centrifuged at 4,000 g for 
1 min, and an aliquot (80 µL) of the supernatant was directly injected 
into the HPLC system. H2O2 oxidation products were analyzed with 
the HPLC system consisting of a JASCO 880-PU liquid chromatograph 
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(JASCO Co., Tokyo, Japan), a Shiseido C18 column (Shiseido Capcell 
Pak MG; 4.6 x 250 mm; 5 µm particle size) and a JASCO UV detector. 
The mobile phase was 0.1 mol/L potassium phosphate buffer (pH 2.1): 
methanol, 99: 1 (v/v). Analyses were performed at 45˚C at a flow rate of 
0.7 mL/min. Absorbance of the eluent was monitored at 269 nm. The 
results of the two different chemical analysis methods have been shown 
to be highly correlated [31]. The test sample’s data was transformed 
to match the training sample’s data. SNPs were genotyped using the 
SNPlex™ Genotyping System (Applied Biosystems).

Design parameters of the SNPlex™ Genotyping System did not 
allow all of the significant SNPs of Valenzuela et al. [14] study to be 
genotyped, and additional SNPs that have been subsequently shown 
to be associated with human pigmentation were genotyped, so that 
the genotyping between the training and test sets was not identical. 
However, the test set was typed for the most significant SNPs from the 
training sample. The relationship between the SNPs genotyped for the 
training and test samples are illustrated in Figure 1.

Briefly, the inflection-point method for choosing the SNPs 
of the prediction models presented in Valenzuela et al. [14] was 
performed as described below. SNPs that were significant for a given 
trait as determined by one-way ANOVA were used to generate all 
possible combinations of three-SNP MLR models (statistical power 
considerations limited our models to three SNPs). R2 values of all 
models were plotted in descending order and inflections in the 
resulting R2 curve were noted. To find the basis of these inflections, we 
constructed barplots that contained all SNPs that comprised all models 
beginning with the model that corresponded to the highest R2 value 
ending with the model that corresponded to the R2 inflection. In doing 
so, it became obvious which SNPs were predominantly responsible for 
the inflections, as these SNPs corresponded to the most frequent SNPs 
in the barplot. The three most frequent SNPs were chosen as the final 
model for a given trait.

The aforementioned method was refined by devising a procedure 
that enabled visualization of the most frequent SNPs for any R2 value, 
independent of barplots. This was accomplished by assigning the 
highest R2 value model (all models sorted in descending values of R2) 
a value of 1, and each subsequent model was numbered consecutively 

(i=1…, x
y

 
  
 

;

where x=total-number-of-SNPs, and y=number-of-SNPs-in-model). 
For a given SNP, if it was present in a given model, then it was assigned 
a value of one, otherwise, it was assigned a value of zero (let presence/
absence be called state). A function was chosen that weights the state 
of a given SNP more heavily for the highest R2 values as compared to 
lower R2 values and such that lower R2-value models were dependant 
on higher R2-value models. The preliminary function was as such,
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When all MLR models were generated all SNPs were equally 
represented, hence each SNP was present a constant number of times. 
More precisely, each independent variable was represented a constant 
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Consequently, all independent variable functions must attain a value of 
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. Additionally, a value of constant
i

 was attained once an 

independent variable reached full representation.

In general, an increasing presence of a SNP as a function of i 
was reflected in its SNP-curve as a positive slope; in contrast, its 
diminishing presence was reflected in its SNP-curve as a negative slope 
(Figure 2). As a function of increasing i, the faster a SNP exhausted 
its representation (i.e., approached its asymptote), then the more 
important its contribution was to higher R2 models (this is one way to 
view “prominent” contributors). Also, the greater the presence of an 
independent variable at higher R2 values, then the more “important” 
it was as a contributor. If a SNP was present at each consecutive i, 
beginning from i=1, then the slope of its SNP-curve was zero, with a 
function value of one until its non-presence in a model. 

Two parameters were varied in R2-SNP curve generation/
comparison for each trait: sample (training sample/test sample), and 
model size (3 SNPs/2 SNPs). SNP curves of different R2 curves were 
compared by varying one parameter while the other parameter was 
held fixed.

Statistical analysis

Cross validation was performed by taking the difference in R2 values 

of the training and test samples (i.e., shrinkage = 
2 2

training testR R− ). 

Relative shrinkage was calculated by taking the ratio of shrinkage to the 

training sample’s R2 (i.e., 1- 

2

2
test

training

R
R

). All R2 values were calculated 

by using the beta estimates of the training sample. Statistical values and 
models were calculated by using SAS (version 9.1) and JMP (release 
8.0) statistical software packages (SAS Institute, Cary, North Carolina). 
All plots were graphed using R statistical freeware package (version 
2.10.1) [32].

Figure 1: Relationship between SNP pools for the training and the test samples. 
Note: Significance was determined by ANOVA (alpha < 0.05).
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Average Skin Reflectance 101 9 34 0 17 8 10 7 186

Eye Color 110 12 38 0 17 8 11 8 204

Hair ratio of Eumelanin-to-Pheomelanin 92 6 36 0 14 8 8 6 170

Total hair melanin 90 6 34 0 14 7 7 6 163

Table 1: Test cohort. Sample size of each ethnic group (self-reported) utilized for model validation.

Training sample Test sample
R2 sample size R2 sample size Shrinkage Relative Shrinkage (%)

Skin reflectance 45.7 447 35.0 186 10.7 23.4
Eye color 76.4 353 61.6 204 14.8 19.4
Hair ratio of Eumelanin-to-Pheomelanin 43.2 162 27.1 170 16.1 37.3
Total hair melanin 76.3 143 25.2 163 51.1 67.0

Table 2: Cross validation results. R2 values of the training sample and the test sample using the training sample’s beta estimates.

Skin reflectance rs16891982 rs1426654 rs2424984
intercept GG GC CC AA AG GG TT CT CC

59.8 3.0 -0.1 -2.9 1.1 -1.7 0.5 3.2 3.0 -6.2

Eye color rs12913832 rs16891982 rs1426654
intercept AA GA GG GG GC CC AA AG GG

4.4 1.2 0.5 -1.8 -0.4 0.1 0.2 -0.3 0.2 0.1

Hair ratio of Eumelanin-to-
Pheomelanin rs16891982 rs12913832 rs1805007

intercept GG GC CC AA GA GG CC TC CC
4.6 -0.4 0.3 0.2 0.7 0.1 -0.8 0.8 -0.8 0.8

Total hair melanin rs16891982 rs1426654 rs12913832
intercept GG GC CC AA AG GG AA GA GG
12011.2 -3096.2 163.4 2932.7 -2196.4 953.4 1243.1 2347.4 -115.4 -2232.0

Table 3: Prediction models’ beta estimates derived from the training sample.

Results
To determine the predictive ability of the models generated by 

Valenzuela et al. [14], we externally cross-validated the models. Ethnic 
composition of the external sample set is listed in Table 1. External 
cross-validation was performed by taking the difference, or shrinkage, 
of corresponding R2 values of each trait for each sample (Table 2). The 
R2 values of the test sample were calculated by using the beta estimates 
derived from the training sample set’s prediction models (Table 3).

We also tested the algorithm presented in Valenzuela et al. [14] by 
applying the algorithm to each sample set and comparing the results 
for each corresponding trait for each sample set. We generated three- 
and two-SNP R2 curves (ie, 29-choose-3 and 29-choose-2, respectively) 
from which we determined three-SNP prediction models. All possible 
combinations of models were generated by using a pool of 29 SNPs 
(Figure 1) that were common to both sample sets and were found to be 
significant in each sample set by one-way ANOVA (p < 0.05; Table 4). 
We also generated SNP curves (see Materials and Methods) so that we 
could compare curves of a given trait between sample sets.

External validation

Skin reflectance: The model derived from the training sample set 
for the average skin reflectance was composed of SNPs rs16891982 
(SLC45A2), rs1426654 (SLC24A5), and rs2424984 (ASIP); together 
they yielded an R2 value of 45.7% (n=447). Applying this model’s beta 
estimates to the test sample set yielded an R2 value of 35.0% (n=186); 
hence, the shrinkage was 10.7%, with a relative shrinkage of 23.4%.

Applying the algorithm to the training sample set and the test 
sample set, both the three- (i=395, Figure 3; and i=219 Figure 4) 
and two-SNP R2 curves resulted in the same three SNPs: rs16891982 
(SLC45A2), rs1426654 (SLC24A5), and rs2424984 (ASIP). The 
corresponding SNP curves between the two sample sets were similar. In 
particular, inflections in the SNP curve of rs16891982 (SLC45A2) were 
often mirrored by inflections in the SNP curve of rs1426654 (SLC24A5) 
indicating that for many of the high R2 models, either one or the other 
of the two SNPs was present. The exhaustion of rs16891982 (SLC45A2) 
resulted in a noticeable inflection in all skin reflectance R2 curves.

Eye color: The model derived from the training sample set for 
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AMACR rs13289 + + *

ASIP rs2424984 + + + + + *

ASIP rs6058017 +

CYP4B1 rs1572603 + + + + + *

DCT rs1325611 + + + + + * * * *

DCT rs1407995 + + + + + * * *

GPR143 rs3044 + + + + + * * * *

HERC2 rs1129038 + + * * * *

HERC2 rs12913832 + + + + + * * * *

HERC2 rs1667394 + + * * * *

HERC2 rs916977 + + * * * *

HPS3 rs2689234 + + +

HPS4 rs1894704 +

HPS4 rs3752589 +

HPS4 rs3752590 + + +

HPS4 rs739289 + + + + + *

IRF4 rs12203592 + + * * *

MC1R rs1805007 + + + + + *

MC1R rs1805008 + + + + + *

MC1R rs3212346 + + + + + * *

MC1R rs3212355 +

MC1R rs3212357 +

MLPH rs2292885 + + + + + * *

MYO18A rs11080078 + + + + + *

MYO5A rs1724630 + + + + + * * * *

MYO5A rs2290332 + + + + + * * *

MYO5A rs752864 + + + + + *

MYO7A rs2276289 + + + + + * * *

MYO7A rs3737454 + + + + + * *

near ASIP rs1015362 + + * *

near KITLG rs12821256 + + *

near SLC24A4 rs12896399 + + * * *

near TYRP1 rs1408799 + + * * * *

OCA2 rs1037208 + + + + + *

OCA2 rs10852218 + + + + + *

OCA2 rs11638265 + + + + + * * * *

OCA2 rs1375164 + + * * * *

OCA2 rs1800404 + + + + + * * * *

OCA2 rs1800407 + + +

OCA2 rs1800410 +

OCA2 rs1800411 + + + + + * * * *

OCA2 rs1800414 +

OCA2 rs1900758 + + + + + * * * *
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OCA2 rs749846 + + + + + * * *

SLC24A5 rs1426654 + + + + + * * * *

SLC45A2 rs16891982 + + + + + * * * *

SLC45A2 rs2287949 + + + + + * * *

SLC45A2 rs26722 + + + + + * * * *

SLC45A2 rs40132 + + +

TPCN2 rs35264875 +

TYR rs1393350 + + * * * *

TYRP1 rs2733832 + + + + + * * * *

* Significant SNPs (test sample) by ANOVA (p<0.05)
Table 4: 52 SNPs within or close to 22 genes.

eye color was composed of SNPs rs12913832 (HERC2), rs16891982 
(SLC45A2), and rs1426654 (SLC24A5); together they yielded an R2 
value of 76.4% (n=353). Applying this model’s beta estimates to the test 
sample yielded an R2 value of 61.6% (n=204); hence, the shrinkage was 
14.8%, with a relative shrinkage of 19.4%.

Applying the algorithm to the training sample set and the test sample 
set, both the three- (i=438, Figure 5; and i=464, Figure 6) and two-
SNP R2 curves resulted in the same three SNPs: rs12913832 (HERC2), 
rs16891982 (SLC45A2), and rs1426654 (SLC24A5). The corresponding 
SNP curves between the two sample sets were similar. In both sample 
sets, the SNP curve of rs12913832 (HERC2) was the highest frequency 
SNP until exhaustion, marked by a major inflection of the R2 curve. 
The order that the SNP curves of rs16891982 (SLC45A2) and rs1426654 
(SLC24A5) reached exhaustion varied between sample sets.

Eumelanin-to-pheomelanin ratio: The model derived from the 
training sample set for the natural logarithm of the ratio of eumelanin-
to-pheomelanin was composed of SNPs rs16891982 (SLC45A2), 
rs12913832 (HERC2), and rs1805007 (MC1R); together yielding an R2 
value of 43.2% (n=162). Applying this model’s beta estimates to the test 
sample yielded an R2 value of 27.1%; hence, the shrinkage was 16.1%, 
with a relative shrinkage of 37.3%.

Applying the algorithm to the training sample set, the three-

SNP R2 curve of the training sample set resulted in the three SNPs 
(i=162, Figure 7): rs12913832 (HERC2), rs16891982 (SLC45A2), and 
rs1805007 (MC1R). The analogous inflection (e.g., a pronounced 
example of an analogous inflection between sample sets that can be 
seen by comparing the R2 curves for eye color; Figures 5 and 6) of the 
three-SNP R2 curve of the test sample set resulted in the three SNPs 
(i=149; Figure 8): rs12913832 (HERC2), rs16891982 (SLC45A2), and 
rs1426654 (SLC24A5). A more detailed inspection of the test sample’s 
three-SNP R2 curve revealed an inflection at i=35 (Figure 9). The three 
highest frequency SNPs at i=35 inflection were the same as the training 
sample set’s at i=162: rs12913832 (HERC2), rs16891982 (SLC45A2), 
and rs1805007 (MC1R). Inflections in the SNP curve of rs12913832 

Figure 2: SNP-function (red curve) behavior in relationship to presence/absence 
(red tics) of SNP rs16891982 (SLC45A2) in a three SNP model. The R2 curve 
is black.

Figure 3: (A) Three-SNP multiple linear regression (MLR) models for skin 
reflectance across populations (training sample set). The horizontal-axis depicts 
all 3654 combinations (i.e., 29-choose-3) of significant SNPs in a three-SNP 
MLR model. The vertical-axis is the R2 value for each model (black curve or 
three-SNP R2 curve) and also the SNP function value for each SNP curve. The 
R2 curve inflection (i=395) is indicated by a vertical black line. The SNP curves of 
the three highest frequency SNPs at i=395 are indicated by colors (rs16891982 
(SLC45A2), red; rs1426654 (SLC24A5), green; rs2424984 (ASIP), brown). (B) 
Bar plot of the SNPs that were present in all models from i=1 to i=395.
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Figure 4: (A) Three-SNP multiple linear regression (MLR) models for skin 
reflectance across populations (test sample set). The horizontal-axis depicts all 
3654 combinations (i.e., 29-choose-3) of significant SNPs in a three-SNP MLR 
model. The vertical-axis is the R2 value for each model (black curve or three-
SNP R2 curve) and also the SNP function value for each SNP curve. The R2 
curve inflection (i=219) is indicated by a vertical black line. The SNP curves of 
the three highest frequency SNPs at i=219 are indicated by colors (rs16891982 
(SLC45A2), red; rs1426654 (SLC24A5), green; rs2424984 (ASIP), brown). (B) 
Bar plot of the SNPs that were present in all models from i=1 to i=219.

Figure 5: (A) Three-SNP multiple linear regression (MLR) models for eye color 
across populations (training sample set). The horizontal-axis depicts all 3654 
combinations (i.e., 29-choose-3) of significant SNPs in a three-SNP MLR model. 
The vertical-axis is the R2 value for each model (black curve or three-SNP R2 
curve) and also the SNP function value for each SNP curve. The R2 curve 
inflection (i=438) is indicated by a vertical black line. The SNP curves of the three 
highest frequency SNPs at i=438 are indicated by colors (rs12913832 (HERC2), 
blue; rs16891982 (SLC45A2), red; rs1426654 (SLC24A5), green). (B) Bar plot of 
the SNPs that were present in all models from i=1 to i=438.

(HERC2) were often mirrored by inflections in the SNP curve of 
rs16891982 (SLC45A2) for all R2 curves; however, the SNP curves 
varied substantially between sample sets.

Total hair melanin: The model derived from the training sample set 
for hair total melanin was composed of SNPs rs16891982 (SLC45A2), 
rs1426654 (SLC24A5), and rs12913832 (HERC2); together yielding an 
R2 value of 76.3% (n=143). Applying this model’s beta estimates to the 
test sample yielded an R2 value of 25.2% (n=164); hence, the shrinkage 
was 51.1% with a relative shrinkage of 67.0%.

Applying the algorithm to the training sample set, both the three- 
and two-SNP R2 curves resulted in the same three SNPs (i=180, Figure 
10): rs16891982 (SLC45A2), rs1426654 (SLC24A5), and rs12913832 
(HERC2). However, applying the algorithm to the test sample set 
resulted in four SNPs (i=398, Figure 11) rs16891982 (SLC45A2), 
rs1426654 (SLC24A5), rs12913832, and rs1800404 (OCA2); the latter 
two SNPs were of equal frequency. The test sample set’s two-SNP R2 

curve resulted in SNP rs16891982 (SLC45A2); all other SNPs were 
of equal frequency. The SNP curves of rs16891982 (SLC45A2) and 
rs1426654 (SLC24A5), and consequently, corresponding R2 curves, 
varied considerably between the samples. In the training sample 
set, rs16891982 (SLC45A2) was present in fewer high-R2 models as 
compared to the test sample. However, their inflections were mirror 
images of each other in both sample sets.

Discussion
In this report, using an independent test sample (n=242) we 

externally cross-validated the pigmentation prediction models derived 
from the training sample (n=789) that we presented in Valenzuela et 
al. [14]. The relative shrinkage was modest for skin reflectance (23.4%), 
eye color (19.4%), and the ratio of eumelanin-to-pheomelanin of hair 
(37.3%), but was largest for hair total melanin (67.0%). We also refined 
the model building algorithm we presented in Valenzuela et al. [14] by 
adding SNP curves (see Materials and Methods) and tested the model 
building algorithm by applying it to both the training and test samples. 
The SNP curves gave us a better understanding of the behavior of the 
most prominent SNPs with respect to the R2 curve inflections and in 
relationship to each other. We determined three-SNP models as we did 
in Valenzuela et al. [14], from three- and two-SNP model R2 curves. In 
doing so, we found that the same third most prominent SNP, as was 
determined in Valenzuela et al. [14], could often be determined from 
the two-SNP model R2 curves. Applying the algorithm to each sample 
set resulted in the same two SNPs, with variability in the third SNP, 
when comparing between sample sets for a given trait (total melanin, 
eumelanin-to-pheomelanin ratio, skin reflectance, and eye color).

Skin reflectance

Our skin reflectance model had a relatively low R2 value (45.7%, 
training sample set) and a relative shrinkage of 23.4% when applied to 
the test sample set. The shrinkage was modest; hence, suggesting our 
model has forensic utility. The algorithm yielded the same three SNPs 
in both sample sets: rs16891982 (SLC45A2), rs1426654 (SLC24A5), 
and rs2424984 (ASIP). The mirror-like behavior of rs16891982 
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Figure 6: (A) Three-SNP multiple linear regression (MLR) models for eye 
color across populations (test sample set). The horizontal-axis depicts all 3654 
combinations (i.e., 29-choose-3) of significant SNPs in a three-SNP MLR model. 
The vertical-axis is the R2 value for each model (black curve or three-SNP R2 
curve) and also the SNP function value for each SNP curve. The R2 curve 
inflection (i=464) is indicated by a vertical black line. The SNP curves of the three 
highest frequency SNPs at i=464 are indicated by colors (rs12913832 (HERC2), 
blue; rs16891982 (SLC45A2), red; rs1426654 (SLC24A5), green). (B) Bar plot of 
the SNPs that were present in all models from i=1 to i=464.

Figure 7: (A) Three-SNP multiple linear regression (MLR) models for natural log 
of hair melanin ratio’s across populations (training sample set). The horizontal-
axis depicts all 3654 combinations (i.e., 29-choose-3) of significant SNPs in a 
three-SNP MLR model. The vertical-axis is the R2 value for each model (black 
curve or three-SNP R2 curve) and also the SNP function value for each SNP 
curve. The R2 curve inflection (i=162) is indicated by a vertical black line. The 
SNP curves of the three highest frequency SNPs at i=162 are indicated by 
colors (rs12913832 (HERC2), blue; rs1805007 (MC1R), orange ; rs16891982 
(SLC45a2), red). (B) Bar plot of the SNPs that were present in all models from 
i=1 to i=162.

(SLC45A2) and rs1426654 (SLC24A5) was likely a result of their 
correlation (chi-square test; df=4; χ2

training=244.733; χ2
test=115.302). 

Additional SNPs, not present in our pool of SNPs, likely will account 
for additional phenotypic variability. We have chosen SNPs that have 
been previously associated with macroscopic measurements of mouse/
human pigmentation. To determine additional genetic associations 
of the macroscopic measurement (skin reflectance), microscopic 
(and perhaps chemical analysis) measurements are likely necessary. 
For example, Szabo et al. [33] showed that morphological differences 
exist in melanosome structure for various ethnicities. Conceivably, 
microscopic differences of pigment granules, or other differences, exist 
within ethnicities as well. Our measurements did not take into account 
these microscopic measurements, nor has any other study of which 
we are aware. Microscopic resolution may be necessary to determine 
SNPs that account for additional variation in skin reflectance. In 
other words, statistically significant genetic signals may be lost by 
grouping objects of similar macroscopic measurement that differ 
microscopically. Accounting for the genetic variations associated with 
these microscopic differences may enable development of models with 
increased predictive capabilities with relatively few SNPs.

Eye color

Similarly, for eye color, we took macroscopic measurements. 
However, in contrast to skin color, our model had a relatively high 
R2 value (76.4%, training sample) and a relative shrinkage of 19.4% 
when applied to the test sample. The shrinkage was modest, thus 

forensically useful, suggesting that much of the variation in eye color 
is determined by relatively few SNPs, and that the SNPs from our 
SNP pool captured that variation. The algorithm yielded the same 
three SNPs in both sample sets: rs12913832 (HERC2), rs16891982 
(SLC45A2), and rs1426654 (SLC24A5). The SNP curves were similar in 
behavior between samples. However, in the training sample rs16891982 
(SLC45A2) reached exhaustion before rs1426654 (SLC24A5) did; 
whereas in the test sample, rs1426654 (SLC24A5) reached exhaustion 
first. The variability in SNP curves may be the result of experimental 
error in measurement, as we used an eye chart to record eye color, 
and/or it could be due to sampling error. More precise measurements 
[34,35] of intermediate eye colors are necessary in order to determine 
associated genetic signals, and therefore, to develop a prediction model 
that accurately describes intermediate eye color.

Eumelanin-to-pheomelanin ratio

Our hair melanin models are based on a sub-phenotype (melanin) 
of hair color. Our ratio of eumelanin-to-pheomelanin model had 
a relatively low R2 value (43.2%, training sample set) and a relative 
shrinkage of 37.3% when applied to the test sample set. In contrast, our 
total hair melanin model had a relatively high R2 value (76.3%, training 
sample set) and a relative shrinkage of 67.0% when applied to the test 
sample set. The large shrinkage in total melanin model was likely due 
to the different chemical analyses. Although the chemical analysis 
methods were highly correlated, the variance in correlation increased 
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Figure 8: (A) Three-SNP multiple linear regression (MLR) models for natural log 
of the hair ratio’s melanins across populations (test sample set). The horizontal-
axis depicts all 3654 combinations (i.e., 29-choose-3) of significant SNPs in a 
three-SNP MLR model. The vertical-axis is the R2 value for each model (black 
curve or three-SNP R2 curve) and also the SNP function value for each SNP 
curve. The R2 curve inflection (i=149) is indicated by a vertical black line. The 
SNP curves of the three highest frequency SNPs at i=149 are indicated by 
colors (rs12913832 (HERC2), blue; rs16891982 (SLC45A2), red; rs1426654 
(SLC24A5), green). (B) Bar plot of the SNPs that were present in all models 
from i=1 to i=149.

Figure 9: (A) Three-SNP multiple linear regression (MLR) models for natural log 
of the hair ratio’s melanins across populations (test sample set). The horizontal-
axis depicts all 3654 combinations (i.e., 29-choose-3) of significant SNPs in a 
three-SNP MLR model. The vertical-axis is the R2 value for each model (black 
curve or three-SNP R2 curve) and also the SNP function value for each SNP 
curve. The R2 curve inflection (i=35) is indicated by a vertical black line. The 
SNP curves of the three highest frequency SNPs at i=35 are indicated by colors 
(rs12913832 (HERC2), blue; rs16891982 (SLC45A2), red; rs1805007 (MC1R), 
orange). (B) Bar plot of the SNPs that were present in all models from i=1 to i=35. 

at higher total melanin values [31], hence the decrease in correlation 
may explain the increase in relative shrinkage of our hair melanin 
models. Less shrinkage was likely observed in the ratio of eumelanin-
to-pheomelanin model because of the natural log transformation of the 
data. Because of the different chemical methodologies employed, we 
cannot determine whether our hair models are forensically useful or 
not. Clearly, the efficacy of the model is highly contingent upon the 
method of measurement. Although hair color is largely influenced by 
melanin content, other (sub-quantitative) traits, such as hair thickness 
[36] and rate of growth, likely contribute to hair color. Hence, additional 
measurements may be necessary to accurately predict hair color.

The algorithm yielded the same three common SNPs in both sample 
sets (for both the three- and two-SNP R2 curves): rs12913832 (HERC2), 
rs1805007 (MC1R), and rs16891982 (SLC45A2). However, in the 
test sample, SNPs rs16891982 (SLC45A2), and rs1426654 (SLC24A5) 
were of equal frequency for the “third” SNP (two-SNP R2 curve). In 
comparing the SNP curves of rs16891982 (SLC45A2) and rs1426654 
(SLC24A5) in the test sample, rs16891982 (SLC45A2) was clearly 
more prominent than rs1426654 (SLC24A5) after the major inflection. 
The mirror-like behavior of rs12913832 (HERC2) and rs16891982 
(SLC45A2) was likely a result of their correlation (Pearson’s chi-square 
test; df=4; χ2

training=74.8; χ2
test=66.8).

Our initial choice of SNPs may be one of the reasons for the low 
R2 value (43.2%) of the hair ratio of melanins (training data set). We 

chose SNPs from genes that have previously been associated with 
pigmentation; however, the ratio of melanins may be governed by 
other genes that are not detectable when eumelanin and pheomelanin 
are measured as a sum, but may be detectable when measured as a ratio. 
This is not surprising as the ratio of melanin, to our knowledge, has 
not been investigated at this level of detail and associated with genetic 
variants on a genome-wide scale. However, our choice of SNPs did 
enable development of the total melanin model that had a relatively 
high R2 value.

Total hair melanin

The shrinkage result for total hair melanin was 51.1% with a 
relative shrinkage of 67.0%. This was likely the result of using different 
chemical analysis methods for the training sample and the test 
sample. The algorithm yielded the same three SNPs in both sample 
sets: rs16891982 (SLC45A2), rs1426654 (SLC24A5), and rs12913832 
(HERC2). However, there was a marked difference in the behavior of 
SNP curve rs16891982 (SLC45A2) between samples. In the training 
sample, SNP curve rs16891982 (SLC45A2) slope varied between 
positive and negative, indicating that it was present in many, but not 
all, of the highest R2 models; whereas in the test sample, the SNP curve 
of rs16891982 (SLC45A2) had a constant slope of zero, indicating that 
it was present in all of the highest R2 models. The variance in SNP 
curve rs16891982 (SLC45A2) between samples was also reflected in 
the R2 curves. The mirror-like behavior of rs16891982 (SLC45A2) and 
rs1426654 (SLC24A5) was likely a result of their correlation (Pearson’s 
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chi-square test; df=4; χ2
training=124.288; χ2

test=114.991). However, 
although the prominent SNP curves varied between samples, their 
relationship within a sample set remained unchanged, consequently 
supporting the argument that differences in algorithm results were due 
to the different chemical analysis methods.

Extending the comparison of determining the three most prominent 
SNPs from the two-SNP R2, we also compared the SNPs determined 
by our algorithm to the three most significant SNPs, as determined 
by one-way ANOVA. We found that the third most prominent SNP, 
as determined from either two- or three-SNP R2-curves, were not 
always the same as the three most significant SNPs as determined by 
one-way ANOVA. In particular, the third most prominent SNP of the 
skin reflectance model, as determined by the algorithm, was rs2424984 
(ASIP). However, as determined by one-way ANOVA, it was the fourth 
most statistically significant SNP, while rs12913832 (HERC2) was the 
third most statistically significant SNP (training sample). Similarly, the 
third most prominent SNP of the natural log of the ratio of eumelanin-
to-pheomelanin model, as determined by the algorithm, was rs1805007 
(MC1R). However, as determined by one-way ANOVA, rs1805007 
(MC1R) was the fourth most prominent SNP, while rs1426654 
(SLC24A5) was the third most prominent SNP (training sample).

To determine if differential-missing SNP data could be attributed 
to the non-correspondence of the third SNP between the algorithm and 
ranking by one-way ANOVA, we selected the 10 most significant SNPs 
as determined by one-way ANOVA and removed all individuals with 

missing genotype information, such that all SNPs contributed the same 
amount of genetic information in all models. Applying the algorithm 
yielded the same prominent SNPs for skin reflectance (training 
sample). Interestingly, however, one-way ANOVA of the non-missing 
data set yielded a different ranking of the SNPs, such that rs2424984 
(ASIP) was the seventh most significant SNP rather than the fourth 
most significant SNP, as was the case in the missing genotype data set.

Conclusion
The results demonstrate the utility of our algorithm for consistently 

selecting the same independent variables of a given trait for building 
prediction models. Additionally, the refinement of our algorithm, by 
adding curves of each independent variable (SNP curves), allowed 
us to determine the most frequent SNPs at any given inflection 
point. Whereas, before refinement, SNPs were selected by choosing 
an arbitrary inflection point and determining the most frequent 
SNPs from a barplot. Hence, the SNP curves condensed the barplot 
information from any point on the R2-curve into one graph. The SNP 
curves also gave us insight into the behavior of prominent SNPs in 
relationship to each other (namely, covariance/co-inheritance), and 
between samples sets. Moreover, by comparing the algorithm results of 
two- and three-SNP R2-curves, we found that the third most prominent 
SNP, as determined by the two-SNP R2-curve, was often the same third 
SNP as determined by the three-SNP R2-curve. Our results suggest 
that the third most prominent SNP may be inferred from the two-SNP 
R2-curve. We note that a weakness to our algorithm [14] is that SNPs 
not significant by one-way ANOVA are excluded from the analysis; 
therefore, significant genetic interactions of non-significant single 

Figure 10: (A) Three-SNP multiple linear regression (MLR) models for hair total 
melanin across populations (training sample set). The horizontal-axis depicts all 
3654 combinations (i.e., 29-choose-3) of significant SNPs in a three-SNP MLR 
model. The vertical-axis is the R2 value for each model (black curve or three-SNP 
R2 curve) and also the SNP function value for each SNP curve. The R2 curve 
inflection (i=180) is indicated by a vertical black line. The SNP curves of the three 
highest frequency SNPs at i=180 are indicated by colors (rs12913832 (HERC2), 
blue; rs16891982 (SLC45A2), red; rs1426654 (SLC24A5), green). (B) Bar plot of 
the SNPs that were present in all models from i=1 to i=180.

Figure 11: (A) Three-SNP multiple linear regression (MLR) models for hair total 
melanin across populations (test sample set). The horizontal-axis depicts all 
3654 combinations (i.e., 29-choose-3) of significant SNPs in a three-SNP MLR 
model. The vertical-axis is the R2 value for each model (black curve or three-
SNP R2 curve) and also the SNP function value for each SNP curve. The R2 
curve inflection (i=398) is indicated by a vertical black line. The SNP curves of 
the four highest frequency SNPs at i=398 are indicated by colors (rs16891982 
(SLC45A2), red; rs1426654 (SLC24A5), green; rs12913832 (HERC2), blue; 
rs1800404 (OCA2), dark blue). (B) Bar plot of the SNPs that were present in all 
models from i=1 to i=180.
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SNPs, as detected by the method presented by Akey et al. [37] may not 
be detected.

Our model building method, as with any model building method, 
strives to develop robust prediction models. These models are merely 
a starting place to predict normal human pigmentation variation, 
independent of ethnic origin. Other studies have developed prediction 
models for eye, skin, and hair color [38-43]. However, with the 
exception of the study by Spichenok et al., these studies trained their 
models utilizing a population of exclusively European descent. Not 
surprisingly, their models are lacking a major melanin associated SNP, 
rs1426654 (SLC24A5).

Garrison et al. [in preparation] utilized the software program 
structure [44] and 44 AIMs to distinguish ethnicities of a subset of 
the training sample set reported in Valenzuela et al. [14] We used 
self-described ethnicity of the training sample as a nominal predictor 
for skin reflectance, this resulted in an R2 value of 0.56. Our skin 
reflectance model utilized three markers, resulting in an R2 value of 
0.45. Hence, although we may indirectly account for ethnicity through 
the utilization of AIMs to increase the predictive capability of our skin 
reflectance model, the cost of utilizing 44 markers likely will result in a 
loss of statistical power, not to mention additional costs.

We acknowledge the importance of controlling for population 
stratification for the purpose of making inferences about the biology 
of a trait. However, the purpose of this study was to validate models 
that are predictive for skin reflectance, eye color, and hair melanin 
pigmentation. Although we have developed and selected models that 
are comprised of genetic variants that have previously been functionally 
associated with pigmentation, we do not propose to have elucidated the 
biology of melanin pigmentation. However, in support of our models 
having biological relevance to pigmentation, studies suggest that the 
variants comprising our models are indeed functional [1-3,7-9,17]. We 
presented these models as an investigative tool in Valenzuela et al. [14] 
to predict externally visible pigmentation traits of an unidentified DNA 
donor [14]. In this study we validated our models on an independent 
data set, our results suggests that our skin reflectance and eye color 
models are predictive.
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