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Introduction
Neuroplasticity is the ability of the brain to reorganize neural 

pathways based on new experiences and learning. Functional MRI 
is widely used to investigate brain networks and develop possible 
treatment for patients with stroke, Alzheimer disease, traumatic brain 
injury, multiple sclerosis, and schizophrenia [1-3].

Neuroplasticity experiments typically involve studies of the 
brain's activity (both on human and animal subjects) following a 
specific task. The aim of many experiments is to determine changes in 
brain's connectivity, which are typically measured via increase in inter 
hemispheric correlation. This paper is motivated by the analysis of 
experiments, conducted by the Southwestern Medical school, on motor 
cortex resting state neuroplasticity experiment on healthy human 
subjects. These experiments study changes in resting state motor cortex 
network following the button clicking training. The increased cross-
correlation between the right and left motor cortices in post-training 
resting state, compared to pre-training resting state, is an indicator of 
training efficiency.

Let us briey explain two popular approaches in statistical analysis 
of the fMRI data. The former is to average voxels' signals over all ROI 
(region of interest in the experiment) for each hemisphere and then 
work with just two signals. Following this method, for each subject 
the data would consist of the right and left motor cortex hemisphere 
time series during pre-training and post-training resting state. Then 
the cross-correlation is computed using Pearson cross-correlation 
for both pre-training and post-training averaged signals. The reason 
why averaging over ROI is popular is because each fMRI experiment 
involves working with large datasets containing noisy observations. 
In particular, the studied experimental data involves 11 slices of fMRI 
scanner data where motor cortex is clearly visible, in addition in each 
slice there are approximately 80-130 voxels in both the right and left 
motor cortex. Note that the number of left motor cortex voxels does not 
typically equal to the number of right motor cortex voxels. Averaging 
over the region of interest smoothes observed time series signals and 
simplifies statistical inference, at the same time important information. 

about voxels' connectivity dynamics is lost due to averaging.

The latter popular approach is based on a voxel-to-voxel analysis 
via computing Pearson correlation between every pair of symmetric 
inter-hemispheric voxels' time-series [4,5]. The correlations reect 
voxel-mirrored homotopic connectivity (VMHC). VMHC assumes 
a symmetric morphology between hemispheres, and because 
this assumption does not hold for human brains, images must be 
transformed before VMHC can be calculated. Then global and regional 
group differences in VMHC are examined. Global VMHC is calculated 
by averaging VMHC values across all brain voxels within a unilateral 
hemispheric grey matter mask (there is only one correlation for each 
pair of homotopic voxels). Group comparisons of global VMHC are 
performed using t-tests. Again, due to multiple comparisons problem 
the voxel-based correlations are averaged. Using t-test for regional 
group differences in VMHC, individual-level VHMC maps are entered 
into a group-level voxel-wise t-test analysis using a mixed-effects 
ordinary least squares model. Multiple comparisons corrections are 
performed using Gaussian random field theory [6]. Note that this 
methodology assumes that observed time series should be sufficiently 
smooth.

This paper proposes, for neuroplasticity experiments, to measure 
connectivity between left and right hemispheres via cross-correlation 
between all pairs of voxels in right and left hemisphere regions of 
interest. This approach yields estimation of large cross-correlation 
matrices with over 1000 elements. Further, following a standard data 
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Abstract
The paper describes the theory, methods and application of statistical analysis of large-p-small-n cross-correlation 

matrices arising in fMRI studies of neuroplasticity, which is the ability of the brain to recognize neural pathways based on 
new experience and change in learning. Traditionally these studies are based on averaging images over large areas in 
right and left hemispheres and then finding a single cross-correlation function. It is proposed to conduct such an analysis 
based on a voxel-to-voxel level which immediately yields large cross-correlation matrices. Furthermore, the matrices 
have an interesting property to have both sparse and dense rows and columns. Main steps in solving the problem are: 
(i) treat observations, available for a single voxel, as a nonparametric regression; (ii) use a wavelet transform and then
work with empirical wavelet coefficients; (iii) develop the theory and methods of adaptive simultaneous confidence
intervals and adaptive rate-minimax thresholding estimation for the matrices. The developed methods are illustrated via
analysis of fMRI experiments and the results allow us not only conclude that during fMRI experiments there is a change
in cross-correlation between left and right hemispheres (the fact well known in the literature), but that we can also enrich 
our understanding how neural pathways are activated and then remain activated in timeon a single voxel-to-voxel level.
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pre-processing methodology, a bandpass filtering at 0.01-0.1 Hz is 
used to identify hemodynamic response [7]. Furthermore, because an 
observed time series signal for an individual voxel is contaminated by a 
relatively large noise, new methods of statistical analysis and inference 
are required.

We propose a new statistical methodology based on voxel-to-
voxel analysis of fMRI data via wavelet decomposition approach. 
In particular, we suggest treating an observed voxel’s signal as a 
nonparametric regression and then using a wavelet transform to 
express crosscorrelation via empirical wavelet coefficients. This 
immediately creates a problem of estimation of large matrices based 
on relatively small sample sizes. Interesting specific of the problem at 
hand is that rows (and columns) of a cross-correlation matrix may be 
sparse and dense. To solve this problem, it is proposed to combine two 
methodologies developed in this paper: adaptive and rate-minimax 
estimation of sparse rows and adaptive simultaneous confidence 
intervals for elements of large cross-correlation matrices. Both the 
methodology and asymptotic results are presented and then illustrated 
on the practical fMRI example.

Using a wavelet approximation for signal processing is well known 
[8-10]. It is a reliable method for filtering a signal from noise. There is 
also a literature devoted to wavelet analysis of stationary time series 
and estimation cross-spectrums. In [11] a consistent crosscorrelation 
estimate is proposed, in [12] estimation of a bivariate time series 
correlation is done via spectral-domain approach. To the best of our 
knowledge, there is no literature on wavelet-based estimation of large 
cross-correlation matrices with both sparse and dense rows, where the 
underlying model is a nonparametric regression. On the other hand, 
there is large and growing literature on rate-minimax estimation 
of traditional correlation matrix with sparse rows; see reviews and 
discussion in [13,14].

The context of the paper is as follows. Section Methods and 
Theory introduces notation, models, methodology of estimation and 
asymptotic results. Section fMRI Application describes the applied 
problem. Section Results presents and discusses main applied results 
obtained with the help of the developed methodology. Proofs can be 
found in the Appendix.

Methods and Theory
In signal processing, cross-correlation is the measure of similarity 

between two functions. This measure is of interest in various 
applications including pattern recognition, single particle analysis, 
electron tomographic imaging, cryptanalysis and neurophysiology. For 
continuous functions, f and g, the cross-correlation is defined as:

(f g)(t) ( ) ( )d .f gτ τ τ
∞

−∞
∗ = ∫

Suppose that two time series signals, say Ŷ(t)  and X̂(t) , are observed 
at n equally spaced time points. Without any loss of generality we can 
assume that the signals are observed for t ∈ [0, 1] and hence we observe 
^ 1̂

ˆ: ( / )Y Y l n=  and 1
ˆ ˆ: ( / )X X l n= , l = 1,2,…,n. Let us additionally assume 

that n is dyadic (otherwise we choose the largest dyadic number not 
larger than n), in our fMRI example n=256=28. Then it is proposed to 
approximate Ŷ(t)  and X̂(t) via corresponding wavelet multiresolution 
expansions,
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Here ϕ(t) and ψ(t) are the scaling (father) function and 
mother wavelet which generate a wavelet basis on [0,1], 
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and the wavelet coefficients 0 0 0
ˆ ˆˆ ˆ, , ' ,j k j k j k jks sθ κ  are calculated using 

observations of the signals at n equidistant points via a cascade 
algorithm supported by all wavelet software packages [8,9]. In our 
fMRI example we use j0 = 5.

Then it is suggested to use a band-pass filter to consider only 
scales in the wavelet expansion that are of interest in an underlying 
practical example. For instance, in the fMRI example the rational, for 
choosing a particular set of scales, is based on the frequency domain of 
hemodynamic response. In frequency domain hemodynamic response 
corresponds to the range of 0.01-0.1 Hz, and for our particular sample 
size, this corresponds to the set of scales 3, 4 and 5 [7]. As a result, from 
now on we are working not with signals (1) but with

Y(t) = (t) and X(t) = (t),θ ψ κ ψ∑ ∑ 

jk jk jk jk
jk jk

	                 (2)

where 
5 /2

3 1
: .

jn

jk j k= =
=∑ ∑ ∑  Correspondingly, available observations 

for the right and left hemispheres are 1 : ( / )Y Y l n=   and 1 : ( / )X X l n=  , l = 
1,2,…,n. Examples of original observed signals 1̂Y  and filtered signals 

1Y can be found in Figure 1. As we see, the filtering does help us to 
visualize hemodynamic responses and remove both the trend and high 
frequency noise. Furthermore, the underlying deterministic signals of 
interest are

(t) = (t) and (t) = (t), t [0,1],jk jk jk jk
jk jk

Y Xθ ψ κ ψ ∈∑ ∑                        (3)

Where 
1

0
: (t) (t)θ = ψ∫jk jkY dt , 

1

0
: (t) (t)κ = ψ∫jk jkX dt  are the 

corresponding wavelet coefficients. It is assumed that { } = , { } =l l l lY Y X X    
and we are considering two classical 5 nonparametric regressions with 
Gaussian errors. Then, according to [15,16], we get the following 
Gaussian sequence model for empirical wavelet coefficients,

1/2 1/2and ,τξ κ κ νη− −θ = θ + = +

jk jk jk jk jk jkn n                       (4)

where all considered ξjk and ηjk are mutually independent standard 
normal. Justification of the made assumption and model (4) for the 
studied fMRI application can be found in Efromovich and Valdez-
Jasso [17] and Valdez-Jasso [18].

Furthermore, there are total p1 right hemisphere voxels and p2 
left hemisphere voxels, with typical numbers for p1 and p2 around 
one hundred. Note that p1 and p2 are not necessarily equal, and then 
the total number of considered cross-correlations is p1 × p2. Another 
important remark for our practical example is that we do not use an 
assumed spatial correlation of signals because it is of interest to: (i) 
understand how and when voxels in motor-cortex are activated; (ii) 
test the developed methodology for an arbitrary large- p-small-n 
setting; (iii) use a traditionally assumed spatial correlation to test the 
obtained results.

Assume that the underlying functions of interest Y(t) and X(t) 
are integrated to zero on [0,1] (this is the case in our fMRI example), 

that is 
1 1

0 0
(t)dt (t)dt 0.Y X= =∫ ∫  The first problem is to estimate, based 

on observations 1Y , l=1,…,n and 1X , l=1,…,n, or correspondingly 
observations (4), the cross-covariance between the underlying 
functions Y(t) and X(t) which is defined as

1

0
: ( ) ( )YX Y t X t dtσ = ∫          			                (5)

as well as the corresponding cross-correlation between underlying 
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functions Y(t) and X(t) which is defined as
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The related problem is to estimate a cross-covariance matrix 
between p1 signals Y(t) and p2 signals X(t) based on p1 filtered time series 

1Y and p2 filtered time series 1X . In this setting, let let Y={Y1,Y2,…,Yp1} 
be a p1 dimensional vector where each Yr is a time series signal with n 
observations and X = {X1,X2,…,Xp2}  be a p2 dimensional vector where 
each Xr is a time series signal based on n observations. Our goal is to 
estimate a corresponding p1 × p2 cross-covariance matrix. Complexity 
of the problem is defined by large p1p2 and small n setting, as well as 
the presence of both sparse and dense rows (columns) in the estimated 
matrices.

Now let us describe the proposed methodology of estimation. We 
begin with estimation of cross-covariance (5). First, we rewrite (5), 
using the Parseval's identity and corresponding wavelet expansions (3), 
as

.YX jk jk
jk

σ θ κ= ∑
Then, according to (4), a natural estimator of σYX is

,YX jk jk
jk

σ θ κ= ∑ 



where empirical wavelet coefficients jkθ and jkκ are defined in (2).

To estimate cross-correlation (6) between signals Y(t) and X(t), we 
use a plug-in estimate
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
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where YYσ  and 
XXσ  are unbiased estimates of YYσ  and XXσ , 

respectively, and they are  defined as
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jk jk

n nσ θ τ σ κ ν− −= − = −∑ ∑

 

where τ̂ and ν̂  are mad estimators [8] of parameters τ and ν based on 
empirical wavelet coefficients on the finest scale.

The following theorem presents recommended confidence 
intervals. Definition of statistics ŶXV and ˆ

YXU , used in the theorem, can 
be found in the Appendix. Let us also note that when we consider p1×p2 
matrices, then we may use notation îjV , σij, etc. for corresponding ith 
and jth signals Y and X.

Theorem 1. (a) (1‒α) confidence interval for a cross-covariance σYX is

1/2 1/2
/2 /2

ˆ ˆ, ,YX YX YX YXz n V n Vα ασ σ− − − +                

where zα/2 is the (1‒α/2) quantile of the standard normal distribution.

(b) Simultaneous (1‒α) confidence interval for cross-covariances 
σij, i ∈{1,2,…,p1}, j ∈{1,2,…,p2} is

1/2 1/2
1 2 1 2

ˆ ˆ2 1n(p p ) , 2 1n(p p ) ,ij ij ij ijn V n Vα ασ γ σ γ− − − +  

          

where γα is defined as solution of the equation

1
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1 / 2.
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 (c) (1‒α) confidence interval for a cross-correlation ρYX is

1/2 1/2
/2 /2

ˆ ˆˆ, .ˆYX YX YX YXz n U zz n Uα αρρ − − − +        

(d) Simultaneous (1‒α) confidence interval for cross-correlation ρij, 
i ∈ {1,2,…,p1},

j ∈ {1,2,…,p2} is

1/2 1/2
1 2 1 2

ˆ ˆˆ ˆ2 1n(p p ) , 2 1n(p p )ij ij ij ijn U n Uα αρ γ ρ γ− − − +       

where γα is defined in (b).

Next theoretical result is about rate-minimax estimation of sparse 
cross-covariances matrices. Following [13,14], let us introduce a class 
of p1×p2 cross-covariance matrices

Uq(s0(p1,p2))

2
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The rate of the upper bound cannot be improved.

Note that in Theorem 2 the traditional matrix l1-norm is used as 
the loss function.

fMRI Application
Researchers at the Southwestern Medical School explored the 

possibility of using alterations in resting brain activity for finding 
potential markers for brain plasticity; details of the study can be found 
Tung et al. [3] and here we just briey describe them. Using 3T MR 
scanner, blood-oxygenation-level-dependent (BOLD) signal fMRI data 
were obtained for healthy right-handed adults. The motor cortex model 
studies were based on a five minute pre-training session, followed by a 
23 minutes training session, and finished with a 5 minute post-training 
run. During the training session, a subject was shown a white cross-hair 
and was instructed to press a button three times with the thumb when 
a change in color was detected. The color change occurred randomly 
every 27-32 seconds, and during the motor task period there were a 
total of 40 times when color change occurred. The raw data from the 
experiment consists of 300 time points for each of pre and post training 
sessions, and four sessions of 340 time points during the training part; 
the data was measured every second. All data was transformed into 
Talairach coordinates using AFNI program and standardized mask 
region of interest (ROI) applied to all subjects to select the motor cortex 
voxels' time series. This preprocessed data was used in our analysis. The 
schematic experimental setup is shown in Figure 2.

Clearly, the averaging over all voxels in ROI smooths the time series 
signal and avoids the problem of simultaneous estimation of elements 
of a large cross-correlation matrix. On the other hand, in each ROI 
slice there are 80-130 voxels in the left and right motor cortex areas and 
there are 11 slices where ROI is clearly visible on fMRI scan. The aim 
is to understand how this information can used to shed a new light on 
the neural plasticity.
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Figure 2: Experimental Setup. The experiment starts with a pre-training fMRI 
scans taken every 1 sec., followed by a button clicking training session, and 
finished with a post-training rest stage.
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Figure 1: Original observed l̂Y  and filtered lY  signals. A left hemisphere voxel's signal is shown by the solid line and a right hemisphere voxel's signal is shown 
by the dashed line. Top diagrams exhibit observed and filtered signals of two highly activated voxels. Bottom diagrams exhibit observed and filtered signals of two 
voxels with small cross-correlation.

Following results described in the Methods section, we obtain 
wavelet decomposition for all voxels in the left and right hemisphere 
ROI. Each voxel in pre and post training sessions consist of 300 time 
points, and because a wavelet decomposition can be obtained for a 
signal of length n=2J, only 256 time points are used to calculate wavelet 
coefficients. Then a signal consisting of 256 time points is decomposed 
into 6 wavelet scales, one father scale and 5 mother scales. Furthermore, 
because we are interested only in a hemodynamic response, in fMRI 
data processing a BOLD signal is commonly bandpass-filtered to 0.01-
0.1 Hz, see [7,19,20]. The studied case of size n=256 implies considering 
scales 3, 4, and 5 corresponding to frequencies of the hemodynamic 
response. In other words, for our applied example a sum like ,jkjk

θ∑  
which we are using throughout the paper, is defined as (compare with (3))

5 2

3 1

: .
j

jk jk
jk j k

θ θ
= =

=∑ ∑∑                            		                    (7)

In what follows we also use the convention that Y (t) is a signal 
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Figure 3: Estimates of cross-correlation matrices. In each diagram the y-axis corresponds to voxels from the right motor cortex and the x-axis to voxels from the left 
motor cortex. A larger cross- correlation yields a whiter (brighter) color. The left two diagrams show matrices for pre-training and post-training. The third to the sixth 
diagrams exhibit cross-correlation matrices for the four training sessions.
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in a right hemisphere and X(t) is in the left one. Adaptive covariance 

thresholding estimator ( )1/2
1 2

ˆˆ : 31n( )ij ij ij ijI p p n Vσ σ σ−= >  , 

introduced in Theorem 2, is applied to fMRI data for each ijth voxel 
pair (i-right voxel, j-left voxel) to identify which pairs of covariances 
are significantly positive. In the thresholding rule we use p1 as the 
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number of voxels in the right motor cortex, p2 as the number of voxels 
in the left motor cortex, and in all presented figures a single fMRI slice 
is considered. Theorem 1 allows us to construct confidence intervals 
for elements of a cross-correlation matrix. In what follows, statistical 
methodology, developed in this paper, is illustrated via a study of fMRI 
conducted on a single volunteer.

Results
The fMRI experiment, described in the previous section, consists 

of 6 parts. The first one is a pre-training session, when a right-handed 
adult is relaxed. This session allows us to understand how voxels in 
left and right motor cortices are connected during no activity time. 
Next 4 sessions are training sessions when a participant is asked to 
press a button, by right hand thumb, three times when a color signal 
is activated. Note that the left motor cortex is solely responsible for 
the movement of the right thumb, and therefore it is of interest how 
right motor cortex may react on the movement. Namely, the activation 
sessions allow us to understand what changes occur in pathways 
between voxels in left and right motor cortices. In particular, we would 
like to understand how many new (if any) pathways are created and 
what changes in cross-correlations are happening. Finally, during 
the post-training session, no activity occurs and we would like to 
understand how voxels in the left and right motor cortices “relax" after 
the training sessions.

Figure 3 shows us estimated cross-correlation matrices for a single 
slice of the left and right motor cortexes during the fMRI experiment. 
Each matrix corresponds to a particular session and the description 
can be found in the caption. For the reader's convenience, the left 
two diagrams show cross-correlation matrices for pre-training and 
post-training sessions. As we see, the activation by clicking a button 
causes increase in the number of activated pathways between the left 
an right hemispheres. Furthermore, the level of cross-correlations is 
dramatically increased. The third diagram exhibits the cross-correlation 
matrix for the first training session. We see a significant increase in 
cross-correlations between some pairs of voxels with respect to both 
pre-training and post-training sessions. On the other hand, the total 
number of activated pathways is about the same with the post-training 
session. The outcome changes rather dramatically during the second 
activation session (see the fourth from the left diagram) when the level 
of cross-correlations and the number of activated pathways dominates 
all other sessions. The level of cross-correlations and the number 
of activated pathways between left and right hemispheres remain 
relatively high during last two activation sessions, but the activity 
clearly decreases in comparison with the second activation session.

Figure 4 allows us to visualize changes in the number of activated 
pathways from pretraining to post-training sessions. As we see, there 
is a significant increase in the number of pathways corresponding to 
larger cross-covariance values while the number of pathways between 

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59

73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59

73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

0
5

10
15

20

Figure 5: Cross-covariance matrices for pre-training (the left diagram) and post-training sessions.Only cells with cross-covariance larger than 0.6 are shown. In the 
diagrams voxels are arrange according to their geometric location in corresponding motor cortexes, axial view.
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pairs with small cross-correlation values remains about the same.

Figure 5 presents the geometry of locations of activated pairs 
of voxels during pre- and post-training sessions. Here voxels are 
arrange according to their geometric location in motor-cortices, and 
only pairs with cross-correlation larger than 0.6 are shown by white 
(brighter) color. As we see, our estimation procedure nicely defines 
areas of activated voxels, and furthermore we see a significant increase 
of activated pathways as well as the increased level of their activation 
during the post-training session.

Figure 6 allows us to zoom diagrams in Figure 5 and look at the 
geometry of activated pairs more closely. It also contains similar 
"zooms" for the four activation sessions. What we see is that, during 
the post-training session, a dramatically larger number of voxel pairs is 
activated. Interestingly, the first activation session does not impress us 
in this respect, but the second activation session does. Furthermore, the 
activation slows down during two last activation sessions but still the 
relationship between left and right hemispheres is very strong.

Finally, Figure 7 shows us adaptive simultaneous confidence 
intervals for cross-correlations during pre- and post-training sessions. 
First of all, we clearly see the increase in pairs of activated voxels with 
larger cross-correlations. Furthermore, we can see how the width of 
a simultaneous confidence interval adapts to specific characteristics 
of a particular voxel. The later may be more clearly seen in the right 
diagram.

We may conclude that the proposed methodology of estimation 
and inference for crosscorrelation matrices performs well and 
does shed light on the dynamic of pathways between left and right 
hemispheres. A simple "clicking-the button" exercise does change the 
brain network. Furthermore, in addition to the conclusion of Tung 
et al. [3], that training of the brain increases the correlation between 
averaged activities in the right and left hemispheres, we can also see 
specific areas of activation and the level of activation on a voxel-by-
voxel level. The latter may be of a special interest for finding a cure for 
brain diseases because the proposed methodology points upon specific 
areas of the brain that can be trained to substitute for disease-damaged 
areas of the brain.

Conclusions
FMRI study of neural paths connecting left and right hemispheres 

involves estimation of large cross-correlation matrices based on a 
relatively small data. Furthermore, these matrices may contain both 
sparse and dense rows and are contaminated by large noise. To estimate 
such matrices, it is proposed to treat observations, available for a single 
voxel, as a nonparametric regression, then apply a wavelet transform 
and work with empirical wavelet coefficients to estimate elements of the 
cross-correlation matrix, and finally use the methodology of adaptive 
thresholding and adaptive simultaneous confidence intervals. The 
proposed methodology is supported by the asymptotic theory which, 
in particular, shows rate-minimaxity of the adaptive thresholding 
procedure.

Analysis of fMRI data indicates that the proposed estimators allow 
us to understand how neural paths change during learning process. 
Namely, we can visualize both activation of new paths and change 
in activity of old paths, described by increased cross-correlations. 
The proposed minimax threshold estimator allows us to eliminate 
insignificant elements in the cross-covariance function, and therefore 
reduce dimensionality of the cross correlation matrix of interest. 
Then the number of comparisons in a cross-correlation matrix can be 

adjusted accordingly, making the width of simultaneous confidence 
intervals shorter. The proposed methodology is rather universal and 
can be used for estimation of large p1×p2 cross-correlation matrices 
whenever a wavelet approximation of underlying signals is feasible.
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