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Reactive oxygen species (ROS) is a diverse group of small 
molecules with different reactivity, sources of production, and, 
ultimately, biological functions. Some of these molecules are important 
contributors to pathogenesis of major chronic diseases including 
cancer, diabetes, and atherosclerosis. Others play major roles in 
environmental, radiation and space biology. In normal state, specific 
ROS carry out homeostatic functions such as innate immunity and 
signaling. However, the word “ROS” is still often used in the literature 
as a generic term synonymous to oxidative stress. This review provides 
a brief description of ROS diversity, interrelations and main biological 
functions.

Generation of ROS: There are several major ROS important 
in normal and pathological physiology: superoxide anion (O2

●-), 
hydrogen peroxide (H2O2), hydroxyl radical (HO●), and hypochlorous 
acid (HOCl) (Figure 1). These species originate from superoxide anion, 
which is most often formed during the reduction of oxygen by cellular 
mitochondrial electron transport chain or in the reactions catalyzed 
by NADPH oxidase [1,2]. Two superoxide molecules are converted to 
hydrogen peroxide either spontaneously or by the action of enzyme 
superoxide dismutase (Figure 1). In the presence of catalytic transition 
metal ions such as Fe2+ or Cu+, H2O2can be converted further to 
hydroxyl radical [3]. Although this reaction is non-enzymatic, it can 
be modulated by metal chaperones and antioxidant defense proteins, 
including transferrin, ceruloplasmin, catalase and others [3]. Hydrogen 
peroxide can also be converted to HOCl by myeloperoxidase (MPO) 
and other peroxidases in the presence of chloride ions (Figure 1). 
Superoxide can react with nitric oxide (NO●) produced by nitric oxide 
synthase to form peroxynitrite (ONOO-), a major reactive nitrogen 
specie [3] (Figure 1). 

ROS in normal physiology: In normal physiology, when their 
levels are tightly controlled by antioxidant defenses, specific ROS carry 
out important homeostatic functions such as signaling by H2O2 and 
innate immunity by HOCl.

Among different ROS, only H2O2 fulfills the requirements for 
intracellular second messenger in cell signaling, i.e. specificity and 
ability to reach different cell compartments. Specificity of H2O2 
is achieved by its relatively low reactivity (see standard reduction 
potentials of major ROS in Figure 1, inset table). It reacts almost 
exclusively with a subset of highly reactive protein thiol groups in 
acidic microenvironment (pK<6). Only few proteins possess such 
groups, including peroxiredoxin 2, which is considered a primary 
sensor of H2O2[4]. Peroxiredoxin thiol groups, oxidized by H2O2 to 
sulfenic acid, can further oxidize other proteins such as protein tyrosine 
phosphatases via disulfide formation. Oxidation of peroxiredoxins 
affects their direct binding to a number of regulatory proteins such as 
c-Myc and JNK [5]. H2O2 is a non-polar molecule, which can diffuse
relatively readily across biological membranes and excerpt its effect in
multiple cellular compartments. Due to its low reactivity, H2O2 also has 
a relatively long half-life, a feature necessary to carry out long-distance
effects across the cell.

HOCl produced by MPO at the sites of inflammation is an 
important molecule of anti-bacterial innate immunity in normal 

physiology [6]. HOCl  is produced in the neutrophil phagosome and 
reacts either directly with ingested bacteria or through generation of 
chloramines on phagosomal proteins which contribute to bacterial 
killing. It has been suggested that HOCl provides a frontline response 
that kills majority of the microorganisms in high-level infections thus 
modulating immune response [7].

ROS in pathophysiology: Under the conditions of oxidative 
stress, when ROS concentrations exceed threshold levels of cellular 
antioxidant defenses, ROS may become pathogenic. For example, in 
diabetes hyperglycemia causes leakage of electrons from mitochondrial 
electron transport chain which results in the increased reduction 
of molecular oxygen and production of superoxide [1]. Another 
intracellular process contributing to the increase of superoxide in 
diabetes is depletion of NADPH, an important cofactor in cellular 
antioxidant defenses. In diabetes, this depletion is caused by the 
activation of the enzymes NADPH oxidase [8] and aldose reductase 
[9]. In addition, hyperglycemia-induced increase in circulating 
advanced glycation end products (AGE) can activate AGE receptor 
(RAGE)-dependent pro-inflammatory signaling giving rise to 
intracellular superoxide [10]. Moreover, oxidative stress can damage 
metal chaperones, thus causing the release of catalytic metals and the 
enhancement of oxidative reactions such as formation of hydroxyl 
radical from hydrogen peroxide [11]. As a result, oxidative tissue 
damage consistent with hydroxyl radical or peroxynitrite reactivity can 
accumulate in diabetes [12,13].

Hypohalous acids are produced by a family of peroxidase enzymes, 
most prominently MPO and peroxidasin [14,15]. MPO is a critical part 
of the innate immunity while peroxidasin catalyzes reinforcement of 
collagen IV networks with sulfilimine crosslinks [15]. However, in the 
disease states, overproduction of hypohalous acids by these enzymes 
may have pathogenic consequences. Indeed, activation of MPO and 
overproduction of HOCl has been reported in diabetes [16] and 
peroxidasin has been shown to mediate oxidative vascular damage 
and renal fibrosis [17-20]. Increase in HOCl-derived protein oxidation 
has been reported in renal tissues of patients with chronic kidney 
disease [14,21]. Also, MPO-derived HOCl has been shown to damage 
HDL and to uncouple and inhibit endothelial nitric oxide synthase in 
atherosclerotic lesions [22-24].

Ionizing radiation-induced ROS: In biological tissues, ROS can 
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also arise from exposure to ionizing radiation (IR). Water radiolysis 
results in generation of specific ROS: e−

aq, 
●OH, H●, and H2O2. In 

the presence of oxygen, e−
aq and H●atoms are rapidly converted to 

superoxide/perhydroxyl (O2
●-/HO2

●) radicals [25]. 

IR is classified as either electromagnetic or particulate. Whereas 
X and γ rays belong to electromagnetic radiation, energetic electrons, 
protons, neutrons, α particles and heavy charged particles are different 
forms of particulate radiation. Many of the damaging effects of water 
radiolysis are due to specific feature of IR, liniar energy transfer (LET) 
[25]. High LET radiations (e.g. α particles, high charge and high energy 
(HZE) particles), which are predominant in space, cause greater 
increase in locally multiply damaged sites in DNA as compared to low 
LET radiations (X and γ rays) [26].

IR-induced ROS cause pathogenic oxidative changes of biological 
molecules resulting in protein carbonylation, lipid peroxidation, 
and enhanced rates of spontaneous gene mutations and neoplastic 
transformation [27,28]. Because of continuous ROS generation, these 
changes may arise for days and months after the initial exposure and 
occur not only in the irradiated cells but also in bystander cells through 
intercellular communication mechanisms, in their own progeny and in 
progeny of bystander cells. The persistence of such stressful effects has 
profound implications for long-term health risks. Increasing evidence 

also supports the role of chronic oxidative stress caused by IR-induced 
ROS in the progression of degenerative diseases, formation of secondary 
malignancy following radiotherapy treatments and radiation-induced 
late tissue injury [29,30].

In conclusion, ROS is a diverse group of molecules that carry out 
distinct biological functions in normal state and in disease.
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