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Abstract

The orexin-A and orexin-B are a hypothalamic neuropeptides, involved in the regulation of feeding behaviour,
sleep-wakefulness rhythm, and neuroendocrine homeostasis that influence the sympathetic nervous system activity,
blood pressure regulation, and metabolic status, glycemic, and may contribute to increase diabetics morbidity and
mortality. This review concentrates on the catabolic role of orexin, which paradoxically coexists with its anabolic
feeding-inducing role. This review aims to provide insight into the biological mechanism that controls orexin’s role in
energy expenditure and to discuss its significance in the context of glycemic control.

On the other hands, hypothalamus regulates muscle glucose metabolism and its insulin sensitivity; in fact the
ventromedial hypothalamus increases glucose uptake in certain peripheral tissues, including brown adipose tissue.

The circumstance that it has been found a relationship between brown adipose tissue, orexins, glucose, insulin
levels suggests new research focused on the possible roles of orexins in many anomalies of energy expenditure and
of glucose homeostasis, with reference to the diabetic patient.
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Epidemiological Data
Obesity and diabetes are a worldwide public health issue with

extensive medical, social, and economic consequences [1,2]. Obesity,
which is defined by the presence of excess adiposity, has negative
effects on health and it increases the risk of developing a variety of
medical conditions, including cardiovascular disease, some cancers,
and diabetes mellitus [3-6]. Over the past three decades, the prevalence
of obesity has doubled in the USA and in Europe country [7,8]. At the
moment, an astounding two-thirds of the US population is overweight
and about one-third, or roughly 100 million Americans, are obese
[8,9]. Although according to the most recent data published in the
2005-2006 update of the National Health and Nutrition Examination
Survey (NHANES) obesity rates have stabilized, others expect that the
obesity ‘epidemic’ will only continue to worsen, with as many as 75%
of Americans and Europeans potentially being overweight in the year
2020 [10]. Physicians will undoubtedly encounter obese persons in
clinical practice and they must, therefore, be able to identify and
address specific needs to this population of patients.

Energy Homeostasis
It is extremely important for the health and disease to understand

appetite regulation and energy expenditure mechanisms. The
awareness that the distributions of these regulatory mechanisms play a
central role in the pathogenesis of obesity and associated metabolic

syndrome is not new, and it is even more interesting to understand
what happens in a diabetic patient.

Resting Energy Expenditure (REE) accounts for 60-75% of total
daily energy expenditure. Several factors contribute to the inter
individual variability in REE such as Free Fat Mass (FFM) [11],
Sympathetic Nervous System (SNS) activity [12,13], and endocrine
status (e.g., thyroid hormone [14]). REE decreases with age [15,16].
The age related decline in REE could be due not only to the loss of
FFM and an alteration in its metabolically active components, but also
to the reduction in physical activity. It is well known that the reduction
of physical activity leads to a reduction in REE and a decrease in FFM.

Energy homeostasis, as it is determined by the balance between
calorie intake and energy expenditure, is regulated by interconnected
neuroendocrine and autonomic pathways emanating from and
controlled by the central nervous system [17].

The Hypothalamus
Many studies point out that the hypothalamus controls muscle

glucose metabolism and its insulin sensitivity; in fact electrical
stimulation of the Ventromedial Hypothalamus (VMH) increases
glucose uptake in certain peripheral tissues, including skeletal muscle,
Brown Adipose Tissue (BAT), and heart of rats. The hypothalamus,
which is a key system component for regulation of energy
homeostasis, continuously monitors signals that reflect energy status
and initiates appropriate behavioural and metabolic responses [18]. It
thus controls glucose utilization in insulin-sensitive organs, such as
skeletal muscle, as well as whole-body energy metabolism [19-22].
Skeletal muscle is the principal site for glucose and fatty acid
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metabolism and it is responsible for insulin resistance associated with
obesity and type 2 diabetes mellitus [23].

BAT
Mammals possess a specialized tissue termed BAT that expends

calories to counteract hypothermia. The capacity to intensify energy
expenditure by manipulating BAT activity is interesting from a
therapeutic point of view, considering the discovery of metabolically
active BAT in adult humans [24,25].

It is hoped that stimulating the calorie burning capacity of BAT in
humans will help contravene obesity and insulin resistance. Therefore
a large number of resources have recently been mobilized in order to
point out safe ways to exploit BAT thermogenesis, resulting in

discovery of pathways that can potentially be targeted for therapeutic
gain [11,12,26-33]. Our laboratory analyses have led to the discovery
of an orexin-BAT axis.

Orexins
Orexins A and B are hypothalamic neuropeptides, involved in the

regulation of feeding behavior, sleep-wakefulness rhythm, and
neuroendocrine homeostasis [33-35].

These peptides derive from the prepro-orexin (preprohypocretin)
gene, which encodes a precursor (130 amino acids in rodents, 131
residues in humans) that is cleaved into orexin A (synonymous with
hypocretin-1; 33 amino acids) and orexin B (hypocretin-2; 28
residues) as reported in the figure 1 [36].

Figure 1: Orexin A and orexin B are derived from a common precursor peptide, prepro-orexin. The actions of orexins are carried out thanks
to two receptors that have G protein denominated OXR-1 and OXR-2 receptors. OXR-1 is selective for orexin A, while OXR-2 shows similar
affinity for both orexin A and orexin B. OXR-1 is coupled to the Gq subclass of heterotrimeric G proteins, while OXR-2 couples to Gi/o
and /or GQ cell lines.

Orexins promote both waking and feeding [37]. A part from this
central role, orexins have probabily peripheral effect and this was
suggested by the detection of substantial levels of orexins in plasma
[38], as well as the demonstration of orexin receptors in several
peripheral tissues, including the Gastrointestinal Tract (GIT),
endocrine pancreas, adrenal glands, and adipose tissue [39,40].

Snow et al. [41] have demonstrated that plasma orexin levels are
one-fifth to one-eighth of orexin Cerebrospinal Fluid (CSF) values.
However, the source of orexin in peripheral tissue is still unclear. Is
orexin directly released into the blood stream or leaked from the
cerebrospinal fluid? One possibility is that orexin is released from the
pituitary since orexin-immunoreactive fibers are present in the median
eminence and pituitary. The other possibility is that orexin is
produced directly in peripheral tissues. Orexin-immunoreactive cells
are observed in the gastrointestinal tract and pancreas. However, the
question of orexin synthesis in peripheral tissue is still under
discussion. Further studies are needed to better understand orexin
physiology in peripheral tissues. Taken together, orexin neurons play

an important role in coordinating central and peripheral states
according to environmental changes, which is highly beneficial to
survival in nature [42].

It has been proved that orexin-A influences several physiological
variables. An Intracerebroventricular (ICV) injection of orexin-A
induces an increase in heart rate, blood pressure, and metabolic rate,
thus, indicating that this neuropeptide plays a role in the control of
vegetative functions [43,44].

These peptides cooperate with two G-protein-coupled receptors,
orexin receptor-1 (hypocretin receptor-1) and orexin receptor-2
(hypocretin receptor-2). The orexin receptor- 1 selectively binds
orexin A 100 times more avidly than orexin B, which is bound
preferentially to the orexin receptor-2.

The expression pattern of mRNA encoding two orexin receptors
(OX1R andOX2R) in the rat’s brain has been demonstrated by Trivedi
et al. [45]. Within the hypothalamus, expression for the OX1R mRNA
was largely restricted in the Ventromedial (VMH) and dorsomedial
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hypothalamic nuclei, while paraventricular nucleus, VMH, and
arcuate nucleus contain high levels of OX2R mRNA, as well as in
mammillary nuclei [46].

Lu et al. [47] have demonstrated that levels of OX1R mRNA
significantly increased in the VMH of rats after 20 h of fasting. An
initial decrease (14 h) and a subsequent increase (20 h) in OX1R
mRNA levels after fasting were observed in the dorsomedial
hypothalamic nucleus.

Levels of OX2R mRNA increased in the arcuate nucleus, but they
didn't change in the dorsomedial hypothalamic nucleus and
paraventricular hypothalamic nucleus following fasting. The time-
dependent and region-specific regulatory patterns of OX1R and OX2R
suggest that they may participate in distinct neural circuits under the
condition of food deprivation.

These evidences indicate that the two types of orexin receptors are
involved in different responses. In addition, the presence of orexin
receptors in other cerebral areas suggests that orexin-A plays
additional functions [34].

It has been demonstrated that the orexins play a role in sleep
regulation [48]. Deficiency in orexin neurotransmission results in the
sleep disorder narcolepsy in mice, dogs, and humans [49]. Orexin-A
also influences body temperature. In fact, an ICV administration of
orexin-A induces an increase in firing rate of the sympathetic nerves to
IBAT, accompanied with a rise in IBAT and colonic temperatures
[50]. The simultaneous increase in heart rate and body temperature
after an ICV injection of orexin-A shows a generalized activation of
the sympathetic nervous system. Few studies have been made on the
topic of the roles played by different cerebral areas involved in the
induction of the abovementioned tachycardia and hyperthermia
[51-53].

Orexin-A may partially mediate pressor response by increasing
basal sympathetic activity, causing catecholamine release, modulating
the vasopressin system [54], and stimulating renal and adrenal orexin
receptors [55]. These considerations are further confirmed by
Shirasaka et al.’s study, that has shown that experimental use orexin-A
increase heart rate, renal sympathetic activity, catecholamine release,
and mean arterial blood pressure [43].

Orexin derangements in patients with narcolepsy were associated
with an increased body mass index and a higher risk of type-II diabetes
mellitus [56,57]. Further, the discovery of a relationship between BAT
and orexins levels also suggests new research on the possible roles of
orexins in many anomalies involving REE.

The influence of orexin-A on sympathetic nervous system activity,
blood pressure regulation, metabolic status and plasma glucose level
may contribute to increase diabetics morbidity and mortality, as
reported in the figure 2 [4,11]. It has been proved that orexins affect
the plasma lipoprotein profile and insulin glucose homeostasis.
Orexins stimulate insulin release from pancreatic cells in vivo and in
vitro [58,59].

Orexin neurons may also functionally interact with glucose-
sensitive neurons in the hypothalamus, notably the glucose-responsive
cells (glucose-excited neurons: stimulated by rising glucose levels)
found predominantly in the Ventromedial Nucleus (VMH), and the
glucose-sensitive neurons (glucose-inhibited neurons: stimulated
when glucose falls) that constitute 30% of Lateral Hypothalamic Area
(LHA) neurons.

There are synaptic contacts between orexin neurons and glucose-
sensitive cells in the LHA, while orexin A specifically stimulates the
glucose-sensitive cells [60]. On the contrary, orexin A inhibits glucose-
responsive neurons in the VMH [61]. Recent work suggests that some
glucose-sensitive neurons express orexins [62]. In the medulla, orexin
neurons innervate the Nucleus of The Solitary Tract (NTS), which is
an important relay station that receives sensory signals, such as portal
vein glucose availability and gastric distension from the viscera. These
signals are conveyed to the hypothalamus [63].

Figure 2: Effects of orexin in peripheral tissue and central nervous
system

Sugar-sensing neurons exist in restricted brain regions, such as
hypothalamus and brain stem, and they are classified into two groups,
called Glucose-Excited (GE) neurons and Glucose-Inhibited (GI)
neurons, in terms of the mode of response to extracellular glucose
changes within physiological Cerebrospinal Fluid (CSF) range [64,65].

For instance, orexin neurons in the LHA and Neuropeptide Y
(NPY)/Agouti-Related Peptide (AgRP) neurons in the ARC are
glucose-inhibited, whereas Melanin-Concentrating Hormone (MCH)
neurons in LHA and Proopiomelanocortin (POMC) neurons in the
ARC are glucose-excited [64,66].

The sugar sensing of orexin neurons, which is a major class of GI
neurons, is metabolism-independent, since the glucose response is
unaffected by glucokinase inhibitors, and mimicked by a non-
metabolizable glucose analog 2-deoxyglucose, although the accurate
mechanisms, particularly the functional molecules relevant to glucose-
induced inhibition, have not yet been explained [67]. Orexin neurons
are not inhibited by L-glucose, galactose, α-methyl-D-glucoside, or
fructose, whereas GE neurons can sense galactose [67]. More recently,
it has been suggested that orexin neurons function as a “conditional
glucosensor,” because the electrical activity of orexin neurons is more
potently inhibited by glucose when intracellular energy levels (i.e.,
cytosolic levels of pyruvate, lactate, or ATP) are low, whereas high
energy levels attenuate the glucose response in orexin neurons [68].
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A growing body of evidence suggest that orexin neuronal system
has a decisive role in the modulation of glucose homeostasis [69,70].
However, the actions of orexin are not necessarily simple and this is
due to the fact that orexin appears to bring to bear opposing effects
probably depending on the experimental conditions. One type of
action is the blood glucose-elevating effect, and the other is the blood
glucose-lowering effect.

In fact, a bolus subcutaneous injection of orexin A (1 nmol)
resulted in an increase in blood glucose and insulin levels in rats under
non-fasting condition [71]. Similarly, infusion of orexin A (15 nmol)
into the third cerebro-ventricle increased blood glucose and insulin
levels, body temperature, and ambulation, without affecting
uncoupling protein 1 expression in BAT under non-fasting and
unanesthetized condition [72].

Besides, Yi et al. [73] have recently reported that a continuous ICV
infusion of orexin A (1 mmol/L, 5 μL/h) into rats fasted for 5 h
brought about an increase in plasma glucose levels, and prevented a
daytime decrease of Endogenous Hepatic Glucose Production (EGP).
Hepatic sympathetic, but not parasympathetic, denervation blocked
the orexin induced apparent enhancement of EGP.

In addition, when the γ-aminobutyric acid receptor antagonist
bicuculline was administered in the perifornical area in order to
activate orexin neurons, basal EGP was increased, and insulin-
mediated suppression of EGP was attenuated, but the insulin-induced
glucose disposal was enhanced.

These results demonstrate that central action of orexin stimulates
sympathetic outflow to the periphery, leading to the promotion of
EGP in the liver and glucose uptake in the skeletal muscle [73]. These
actions of orexin seem to be reasonable in terms of survival in
starvation, because when metabolic fuel levels are low, hypothalamic
orexin neurons can be activated to supply the energy to muscle via
hepatic glucose production, and support searching for food.

Several studies have focused on finding out the relationship
between circulating orexin and fat mass and have proved that there is a
strong correlation between low plasma orexin and obesity [39,74]. A
significant issue is whether this naturally occurring biological peptide
"orexin" in useful in weight management or obesity treatment.
Observations made by Warwick PM [75] suggest that when orexin is
peripherally injected, it activates thermogenesis, without limiting
feeding or increasing physical activity. These encouraging observations
have paved the way for clinical testing of the thermogenic potential of
orexin [76].

Studies indicate a lower mortality in overweight and obese patients,
while underweight patients appear to suffer from increased mortality.
These observations show that adipose tissue can play an important
metabolic role during insulin resistance.

The functions of key organs involved in peripheral glucose
metabolism are dually regulated by the sympathetic and
parasympathetic nervous systems [77]. Stimulation of the LHA
increases the activity of hepatic vagal nerve, whereas stimulation of the
VMH produces a strong inhibition of vagal nerve activity in
anesthetized rats [78]. An anatomical analysis using retrograde neural
tracer showed that orexin neurons in the LHA project to liver and
adipose tissue [79].

Emerging evidence points out that orexin not only senses peripheral
metabolic signals, but also controls glucose production and utilization
in the peripheral tissues via the autonomic nervous system [70]. These

conclusions demonstrate that orexin can function as a master
regulator to coordinate the central and peripheral hormonal actions
for the maintenance of glucose homeostasis.

Orexin fibers impinge upon sympathetic preganglionic neurons in
the Intermediolateral column of the spinal cord (IML) that project to
the liver and promote the glucose production [80-82]. Besides, orexin
fibers are distributed throughout the rat brainstem including Dorsal
Motor Nucleus of Vagus (DMNV) neurons and Nucleus Of The
Solitary Tract (NTS) [83,84]. Orexin A and B directly depolarize the
DMNV neurons, which is the major source of parasympathetic
innervation to the peripheral tissues including liver [85]. It is therefore
anticipated that glucose metabolism is dually regulated by orexin
system through the changes in sympathetic and parasympathetic
balance.

Low dose of orexin A (10 ng ICV) actually lowers lipolysis by
suppressing sympathetic nerve activity (probably through
parasympathetic innervation, [86]), whereas high-dose of orexin A
(1000 ng ICV) promotes lipolysis through facilitation of the
sympathetic nervous system [87].

In addition, low-dose of orexin A (10 ng i.v., 0.01 ng ICV, or 5 pmol
into NTS) has a cardiovascular suppressive effect, whereas high-dose
of orexin A (1000 ng i.v., 10 ng ICV, or >20 pmol into NTS)
conversely induces the cardiovascular excitatory effects [88,89].

It has been reported that the circadian clock regulates active glucose
and lipid metabolism in the liver and other peripheral tissues [90,91].
Orexin neurons receive dense inputs from the Suprachiasmatic
Nucleus (SCN), the master circadian clock [81].

ICV injection of orexin antagonist completely prevented the
endogenous rise in glucose levels at the end of the sleep period,
indicating that orexin is an important factor to control the daily
rhythm in plasma glucose concentrations [82]. Thus, orexin appears to
play a pivotal role in the interconnection among biological clock,
sleep/wake cycle, and glucose homeostasis. Although orexin A
independently produces blood glucose-elevating and -lowering effects
under different experimental conditions, the respective effects may be
implicated in the rise and fall of blood glucose levels with circadian
rhythm. Further studies need to be done in order to clarify the
mechanisms with whom these opposing effects of orexin are
adequately coordinated under physiological conditions.

The mechanisms through which orexins regulate glucose
metabolism through OXR-1 and OXR-2 binding have not been
extensively examined. Existing evidence suggests that orexins induce
glucose production in the liver and help glucose uptake in skeletal
muscle [73,92]. In addition it has been shown that orexins A and B
differentially regulate glucagon release from pancreas [93].

In conclusion, orexin should be regarded as an important peptide in
the modulation of homeostasis of glucose and pharmacological tools
should be examined to regulate the orexinergic system in the
pathological conditions.
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