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Introduction
Hydrogen (H2) is an alternative fuel in development, clean 

during combustion phase and with a high energy yield (142.35 kJ/g). 
Researchers study production of hydrogen from renewable biomass 
and different processes. Biological production is based on exploitation 
of micro-organisms with different biochemical pathways proficient at 
hydrogen production. Different pathways exist to produce hydrogen: 
dark fermentation from sugar, biophotolysis from absorption of light 
and water, and photo fermentation from absorption of light and 
organic acid [1-3]. Each pathway has a specific enzymes set but they 
suffer of a low yield hydrogen production. Indeed the microorganisms 
with such pathway are not designed to produce only hydrogen; other 
essential metabolic activities must be sustained for cell survival. A 
more recent biological approach, called cell-free synthetic pathway 
biotransformation [4], consists first to identify different target enzymes 
from different natural pathways, and next to combine them together 
in a synthetic system specific for one function such as hydrogen 
production. Different synthetic constructions of enzymes in-vitro 
in cell-free systems were build up for hydrogen production from the 
utilization of sugar as raw material [5-7]. In 2007, Zhang et al. have 
built a cell-free system of 13 enzymes in order to synthesize hydrogen 
from starch [7]. In 2009, Ye et al. have made a similar system of 13 
enzymes but using as raw material, cellobiose the dominant product 
of enzymatic cellulose hydrolysis [5]. The hydrogen yield for such 
system is near 11.3 moles of H2 per mole of glucose coming from 
the transformation cellobiose [5]. This yield represents 93% of the 
theoretical maximum of hydrogen production from glucose.

However, the rate of H2 production of such a system is too weak 
in order to be competitive for an industrial scale. Some works have 
pointed out that this rate could potentially be enhanced 1000-fold 
if the enzyme kinetics could be improved [8]. Our study explored 

different modeling approaches to have a better understanding and 
control on hydrogen cell-free system with the objective to find different 
paths to improve the performance of production of hydrogen. First, 
a numerical model of the Ye et al. [5] system consuming cellobiose, 
based on ordinary differential equations, was built up in order to follow 
the system behavior in different conditions. The differential equations 
of the model have been written on the basis of biochemical knowledge 
for each enzyme reaction and their kinetic parameters. Then, through 
simulations, we searched for initial conditions and kinetic parameters 
that would optimize the production rate. Second, another modeling 
approach based on artificial neural network was developed to 
reproduce the global behavior of the system, in particular to predict the 
rate of production of hydrogen as a function of initial concentrations 
of substrates and enzymes. This approach doesn’t require information 
on enzyme kinetics. 

The overall aim of our investigation is to show that is it possible 
through modeling to find optimal conditions for the hydrogen 
production using the Ye et al. cell-free system [5] but also to show 
the suitability of modeling for the management of cell-free system in 
general. 
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Abstract
Hydrogen is a good candidate for the next generation fuel with a high energy density and an environment 

friendly behavior in the energy production phase. Micro-organism based biological production of hydrogen currently 
suffers low hydrogen production yields because the living cells must sustain different cellular activities other than the 
hydrogen production to survive. To circumvent this, teams have explored the synthetic assembly of enzymes in-vitro 
in cell-free systems with specific functions. Such a synthetic cell-free system was recently devised by combining 13 
different enzymes to synthesize hydrogen from cellulose or cellobiose with better yield than microorganism-based 
systems. We used methods based on differential equations calculations to investigate how the initial conditions 
and the kinetic parameters of the enzymes influenced the productivity of a such system and, through simulations, 
identified those conditions that would optimize hydrogen production starting with cellobiose as substrate. Further, if 
the kinetic parameters of the component enzymes of such a system are not known, we showed how, using artificial 
neural network, it is possible to identify alternative models that account for the rate of production of hydrogen. This 
work demonstrates how modeling can help in designing and characterizing cell-free systems in synthetic biology. A 
web-based simulator implementing our differential equations based model is provided freely as a service for non-
commercial usage at http://www.bo-protscience.fr/h2.
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Method
Knowledge-based model construction

The basis of our work is the cell-free system that produces hydrogen 
from cellobiose consumption at 32°C, as developed by Ye et al. [5] 
(Figure 1). Our knowledge-based model was built from pre-existing 
models [5,9]. These models are based on ordinary differential equations 
(ODE) that characterize reaction mechanisms in the system. The system 
is composed of 19 metabolites, 13 enzymes that catalyze 14 reactions. 
Likewise, our knowledge-based model relied on the detailed knowledge 
of the kinetic features of each reaction and enzyme of the system. 
The 13 enzymes are the same as described in Ye et al. [5]: cellobiose 
phosphorylase (E1), phosphoglucomutase (E2), glucose-6-phosphate 
dehydrogenase (E3), 6-phosphogluconic dehydrogenase (E4), ribose 
5-phosphate isomerase (E5), ribulose-5-phosphate 3-epimerase (E6), 
transketolase (E7), transaldolase (E8), triose-phosphate isomerase (E9), 
aldolase (E10), fructose-1,6-bisphosphatase (E11), phosphoglucose 
Isomerase (E12), NADP+ dependent hydrogen dehydrogenase (E13). 
All 13 enzymes and the 14 associated reactions are further detailed in 
Supplementary Table 1. 

Reactions can be represented under a numerical form using (i) the 
kinetic equations which are derived from the knowledge of the kinetic 

laws that govern the enzymes involved and (ii) the kinetic parameters 
associated with the enzymes: kcat, the turnover number, the number of 
times each enzyme site converts substrate to product per unit time; Km, 
the Michaelis-Menten constant, the affinity of the enzyme for substrate; 
Ki, the dissociation constant for inhibitor binding; Keq, the equilibrium 
constant.

Our kinetic equations integrate an enzyme degradation constant 
(λ) in order to reproduce the inactivation and the temporal degradation 
of enzymes. The kinetic equation and the kinetic parameters of each 
enzyme are described in the Supplementary Table 2. These equations 
were used to write the mass balance equations of each metabolite 
(Supplementary Table 3). Mass balance equations are ODE. The system has 
19 metabolites, hence 9 ODE are required to follow all system metabolites. 
The solution of these 19 ODE permit to monitor the concentration of each 
metabolite as a function of time throughout simulation runs.

Figure 1: Detailed diagram of the cell-free system for biohydrogen production 
from cellobiose used by Ye et al. [5]. 

G1P, glucose-1-phosphate; G6P, glucose-6-phosphate; 6PG, 
6-phosphogluconate; Ru5P, ribulose-5- phosphate; Pi, inorganic phosphate; 
R5P, ribose-5-phosphate; X5P, xylulose-5-phosphate; S7P, sedoheptulose-
7-phosphate; E4P ́erythrose-4-phosphate; G3P, glyceraldehyde-3-
phosphate; DHAP, dihydroxyacetone phosphate; F6P, fructose-6-
phosphate; FDP, fructose-1,6-phosphate; #1,cellobiosephosphorylase; #2, 
phosphoglucomutase; #3, G-6-P dehydrogenase; #4, 6-phosphogluconate 
dehydrogenase ; #5 Phosphoriboseisomerase; #6, Ribulose 5-phosphate 
epimerase; #7, Transaldolase; #8, Transketolase; #9, Triose phosphate 
isomerase; #10, Aldolase, #11, Phosphoglucoseisomerase; #12, Fructose-1, 
6-bisphosphatase; #13, NADP(+) hydrogen dehydrogenase.

Parameters screened for optimization Final hydrogen concentration (mM)
No optimization 112
Enzyme degradation (λ) 118

Enzyme affinity for substrate (Km) 238

Initial enzyme concentration (E0) 591
Enzyme turn-over (kcat) 810

Table 1: Hydrogen final concentration value reached by the system after single 
stage optimization runs. E0, kcat, Km and λ for all the 13 enzymes were optimized 
each separately while the other parameters were kept constant at their default 
values (see Method). The modifications were evaluated in order to obtain the best 
final hydrogen concentration (mM) after a simulation time of 9000 min with starting 
concentrations of 70 mM for cellobiose, 70 mM for inorganic phosphate and 1 mM 
for NADP. Additional results are featured in Figure 3.

Parameters screened for 
optimization

Selected 
enzymes

Final hydrogen  
concentration (mM)

Initial enzyme concentration (E0) E3, E4, E13 582

Enzyme turn-over (kcat) E3, E4, E13 800
Enzyme affinity for substrate (Km) E4 and E13 236

Table 2: Hydrogen final concentration value reached by the system after single 
stage optimization runs. Here, E0, kcat and Km for only E3 (glucose-6-phosphate 
dehydrogenase), E4 (6-phosphogluconic dehydrogenase) and E13 (NADP+ 
dependant hydrogen dehydrogenase) were optimized each separately while 
the parameters for the other enzymes were kept constant at their default values 
(see Method). The modifications were evaluated in order to obtain the best final 
hydrogen concentration (mM) after a simulation time of 9000 min with starting 
concentrations of 70 mM for cellobiose, 70 mM for inorganic phosphate and 1 mM 
for NADP. Additional results are featured in Figure 3. 

First optimization
(performed on all enzymes) Second optimization Optimal H2  

concentration (mM)

Initial enzyme concentration 
(E0)

Km  
(all enzymes)

827
(98.5%)

λ 
(all enzymes)

815 
(97.0 %)

Km  
(only E4 and E13)

819 
(97.5 %)

λ 
(only E4 and E13)

793 
(94.5 %)

Table 3:  Hydrogen final concentration reached by the system after double 
stage optimization.
In the first stage optimization all the enzymes are modified on the initial 
concentration (E0). The modifications are evaluated in order to obtain the best 
hydrogen final concentration (mM) from E0 modifications. Next, the optimized 
value for E0 was integrated in the system for a second optimization round on 
another optimization parameter, Km or λ. Simulations of 9000 min were executed 
with starting concentrations of 70mM for cellobiose, 70mM for phosphate and 
1mM for NADP. Percentages between parentheses are with respect to maximum 
theoretical H2 concentration that could be achieved.
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number experiments available for the construction of the initial dataset. 
The size of dataset must be large enough to build an ANN model. If the 
size is too small, ANN method is not relevant.

After validation, ANN model allows to predict the value of output 
vectors from a set of input vectors. System predictions from ANN 
method are the most valid and relevant in the system conditions 
encountered in the initial dataset. Prediction from of out-of-the-box 
conditions must be subject to caution. The more the distance between 
the conditions of the dataset and the out-of-the-box conditions, the 
higher is the probability to have inaccurate and even false predictions. 

Here we explored the use of ANN to model cell-free systems. 
Our aim is to validate its application for modeling output of cell-free 
systems knowing only the starting state of the system.

Artificial neural network is a computational model based on 
biological neural networks. The model structure is similar to the 
structure of the biological neural networks with the presence of 
computational units interconnected between them. One computational 
unit is assimilated to a formal neuron. A formal neuron can receive one 
or several input signals. The neuron treats the weighted summation of 
input signals to produce an output signal by the action of an activation 
function. Artificial neural network have a learning phase to identify 
a model with the adequate weights so that the model outputs match 
the system output. Because they can approximate nonlinear functions 
between inputs and outputs from incomplete databases and with 
specific accuracy, ANNs are now commonly used to model complex 
systems. The construction of an ANN model is achieved following 
four classical steps: (i) building of a database, (ii) determining model 
structure, (iii) fitting parameters and (iv) validating model. Each of 
these steps is detailed below.

In first instance, the knowledge-based model, as described in 
the previous section, was used to generate a database of hydrogen 
production trajectories that were simulated with different sets of starting 
conditions for the system. The starting conditions for the simulations, 
i.e the initial concentrations of the 13 enzymes and 3 substrates 
(NADP, cellobiose and inorganic phosphate), served as inputs for the 
ANN while the observed initial rate of hydrogen production at t=0 min 
and final hydrogen concentration reached at the end of the simulations 
served as outputs for the ANN. These inputs were chosen because they 
can be realistically set up experimentally. To constitute the database, 
initial values for the different simulation runs were varied between the 
following ranges: between 5 and 20 U/mL for enzyme concentration, 
between 0.5 and 2 mM for NADP concentration and between 35 and 
140 mM for both cellobiose and inorganic phosphate concentrations.

The database comprised four distinct datasets. These are further 
detailed below. A first very large dataset, hereby called “Base zero”, was 
constituted for the purpose of evaluating whether ANN can indeed be 
used and to build a model that can account for the rate of H2 production 
and for the final level of H2 in the system. The starting conditions that 
were used to build this dataset consisted in setting two possible values 
for each the 16 inputs and generating all possible combinations of these 
starting values, hence making a total of 216=65,536 starting conditions. 
Starting enzyme concentrations were set to 5 and 20 U/mL, NADP 
concentrations to 0.5 and 2 mM and for both cellobiose and phosphate 
to 35 and 140 mM. After validating the use of ANN to model both 
production rate and final concentrations using “Base zero” dataset, we 
investigated whether smaller training datasets could generate efficient 
ANN models. Hence, two smaller datasets, hereby called “Base A” and 
“Base B” were constituted for that purpose. “BaseA” dataset comprises 

The model was conceptualized under the SBML format (Systems 
Biology Markup Language) that is a standard to represent biochemical 
networks [10]. Cell Designer and Copasi are software tools used for the 
model implementation in SBML format. The resolution of ODE was 
performed by the SBML ODE Solver Library or Copasi ODE solver. 

System optimization 

Optimization consists in modifying parameters of a system in 
order to improve its functioning and performance. At the end of an 
optimization process, the parameters of the system have optimized 
values. Our cell free system optimization was carried out to improve 
the final concentration of hydrogen. We selected four enzyme 
parameters for optimization: enzyme initial concentration (E0), kcat, Km 
and degradation constant (λ). 

We performed both single stage optimization and double stage 
optimization. Single stage optimization is carried out on only one 
parameter while the others are kept constant. Double stage optimization 
required two steps. The first step is a single stage optimization on one 
parameter. Next, the optimized value of this parameter was integrated 
in the system for a second optimization round on another parameter. 
In total, four single stage optimizations were accomplished, one for 
each optimization parameter (E0, kcat, Km and λ). Two double stages 
optimizations called “E0+Km” and “E0+λ” were performed: in “E0+Km”, 
initial enzyme concentration (E0) was optimized in first stage and 
substrate affinity (Km) in second stage; in “E0+λ”, E0 was optimized first 
and enzyme degradation constant (λ) in second stage. The modification 
of these parameters were modified within the following predefined 
limits: for E0, between 1 and 100 U/mL; for kcat, between 0.001 and 1 
mmol.ml/min/U; for Km, between Km0/10 and 10Km0 where Km0 is the 
native experimentally derived value as featured in Supplementary Table 
2; for λ, between 5 h and 75 h of half-life time. Otherwise, the default 
initial enzyme concentration (E0) was set to 10 U/mL and the default 
values for kcat, Km, λ were those indicated in Supplementary Table 2. 
All optimization simulations were started with 70 mM of cellobiose, 70 
mM of phosphate, 1 mM of NADP. Each simulation run represented 
9000 min (150 h) of the cell-free system operation. The optimization 
process was performed with the optimization module of Copasi using 
genetic algorithm as solver. Copasi have a set of default values for 
genetic algorithm that are adapted at the optimization of biochemical 
kinetics: 200 generations, 20 population size. Random number 
generator [11] takes care of the introduction of genetic variation by 
mutation and cross-over. This set-up allows an optimization process 
with acceptable solution in 5-10 min.

In theory, genetic algorithm could provide the best solution to a 
problem but requires a lot of computing time, an infinity period in 
extreme case. In respectable time delay, genetic algorithm doesn’t give 
the perfect solution but it covers a set of solution near the optimal 
solution. For each operation of optimizations, multiple optimization 
simulations, at least 5, were carried.

Artificial neural network modeling      

The model above used for optimization was built on prior knowledge 
of the kinetic laws and properties associated with each enzyme in the 
system and the definition of ordinary differential equations. However, 
sometimes this knowledge is incomplete. In this case, the construction 
of a robust ODE model is very difficult and it is at stake to find other 
modeling approaches. One such method is modeling using artificial 
neural networks (ANN). ANN models require only an initial dataset 
of input and output vectors. ANN models are very dependent of the 
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only 32 simulations that test 32 different starting conditions. For 
each of them, only one input among the sixteen inputs was modified 
between the two possible values used for “Base zero” (hence a total of 
2 × 16=32 starting conditions) while the other inputs were set to the 
following default initial values: 10 U/mL for enzyme concentration, 1 
mM for NADP and 70 mM for both cellobiose and phosphate. “Base 
B” was built using only 12 different simulation settings. Values for 
the starting conditions were set as for “Base A” but only E3, E4, E13, 
NADP+, cellobiose and phosphate initial values were toggled. Hence, 
“Base B” is a subset of “Base A”. E3, E4, E13 were modified to create this 
“Base B” dataset because they were determined as the enzymes which 
influence most the output of the system. We also wanted to investigate 
whether a dataset built by changing only the concentration of these 
enzymes could be sufficient to identify an adequate model. Henceforth, 
we would test how efficient is ANN able to learn from few data.

The last dataset, hereafter called “Base V”, was generated for the 
purpose of validating ANN models trained with the small datasets 
“Base A” and “Base B”. This dataset constituted of 625 simulations 
settings generated after combining different starting concentrations 
for E3, E4, E13 and NADP. All possible combinations of five initial 
concentrations for E3, E4, E13 (5, 8.75, 12.5, 16.25, 20 U/mL) and 5 
initial concentrations for NADP (0.5, 0.875, 1.25, 1.625, 2 mM) were 
tested thus accounting a total of 625 starting conditions. All four 
datasets were obtained through simulations of 8000 min.

The data points for inputs and outputs used in our ANN modeling 
were all normalized between −1 and 1 with the following equation: 

2
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max min
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norm,i
max min

X + XX
X = X X
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where, Xi is unnormalized data point i for an input or an output, Xmin 
is the minima among all the data points of an input or output, Xmax 
is the maxima among all the data points of an input or output and 
Xnorm,i is the normalized value (between −1 and 1) for the data point 
i. Normalization is a recommended pre-treatment of the datasets in 
neural network modeling. Data are often very heterogeneous in their 
nature and their range of values. Normalization reduces the dispersion 
of these values, thus facilitating learning step.

Neural network structure

Artificial neural modeling was performed within the R 
programming environment using the caret and nnet packages. The 
artificial neural network model is a feed-forward neural network 
with single hidden layer. The works of Cybenko and Funahashi, show 
that only one hidden layer is sufficient to approximate all non-linear 
functions [12,13]. Then, the model accuracy depends on the number of 
the hidden nodes in this layer. The optimal number of hidden neuron 
was defined automatically by the caret package. 

Each model had 5 neurons in the hidden layer after the automatic 
settings. Two distinct artificial neural models were built: one to 
predict the initial rate of H2 production and the other for the final 
concentration of hydrogen. During this fitting step, a 10 fold cross-
validation is applied to estimate the performance of the neural network 
learning phase. The dataset is randomly splitted in 10 parts. Nine parts 
were used as training dataset and the remaining part was used as the 
test dataset. An auto-prediction operation is performed too with the 
identified model for evaluation. During the validation phase, the model 
is tested on the validation dataset “Base V”.

The RMSE (root-mean-square error) and the R2 (coefficient of 
determination) were the selected metric in order to evaluate the model 
performance during the learning phase and the validation:
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where,

oi is the measured activity of the ith data point,

om is the mean of the measured activity,

pi is the predicted activity of the ith data point,

pm is the mean of the predicted activity,

n is the number of data points,

RMSE was calculated from normalized data between −1, 1.

Results and Discussion
System optimization for final hydrogen concentration

Our knowledge-based model was constructed by following the 
setup described by Ye et al. and Ardao et al. [5,9]. In these operating 
conditions, with 70 mM initial cellobiose concentration, the system 
yielded a final concentration of H2 of 112 mM after 9000 min of 
operation time (Figure 2). With this model, several optimization 
operations was performed in order to search for kinetic parameters 
that would give the best hydrogen yield after 9000 min with 70 mM of 

Figure 2: Simulation of hydrogen production in a cell-free system described 
by Ye et al. [5].
The starting concentrations for cellobiose and inorganic phosphate were 70 
mM cellobiose and 1 mM for NADP. The simulated final H2 concentration after 
9000 min was 112 mMin agreement to previous reports [5].
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cellobiose. Any improvement of final concentration of hydrogen in the 
same lapse of time would indicate that an improvement of the system 
productivity is possible if the corresponding parameters could be 
tweaked. We screened 14 kcat, 19 Km, 13 enzyme initial concentrations 
(E0) and 9 enzyme degradation constants (λ) which had half-life values 
inferior to 75 h. The advantage of an in silico optimization operation is 
the ease to manipulate all these parameters at the same time and see the 
repercussion on the simulation. It would require a long and expensive 
phase of enzyme engineering to do the same operation in vitro. It will 
be easier to validate and reproduce in vitro the result from an in silico 
optimization if the number of optimization parameters is low.

First, single stage optimizations were performed as described in 
the Method section. Four distinct tracts of single stage optimizations 
were performed, one for each parameter (E0, kcat, Km, λ). Hence, 
multiple single stage optimizations were executed individually for each 
enzyme to explore the range of values taken by the four investigated 
parameters after optimization. This range of values is the consequence 
of the utilization of genetic algorithm which allows finding not the best 
solution but a set of solutions near the optimal performance of the 
system. In Table 1 are featured the best final hydrogen concentrations 
that could be reached after optimizing each of the four parameters 
individually. These results show that enzyme degradation rate (λ) has 
no impact on final hydrogen concentration produced, i.e 118 mM, at 
least within the range of values that was studied. On the other hand, our 
results show that final H2 yield improved 2-fold with Km optimization, 
5 fold with E0 and 7-fold with kcat. As expected, it is the kcat, which is the 
turnover rate of the enzyme, which had the greater influence on the 
yield of the system.

Our results show that, with a starting concentration of 70 mM 
cellobiose, the system can produce up to 840 mM of H2 if the enzymes 
are changed for their kcat values. In practice, this can be achieved, 
likewise for Km values, either by using better performing homologous 
enzymes or by protein engineering. The optimization conditions on 
kcat reached nearly 96% of the theoretical maximum. The optimization 
with E0 is second best and H2 production reached 70% of theoretical 
maximum, at least within the range of values studied (see Method 
section). The definite advantage with the optimization of E0 is that it 
is easiest to reproduce experimentally. This can be achieved by simply 
adjusting the starting amount of enzymes to the optimal E0 values 
found through optimization. The knowledge of optimal conditions for 
E0 is hence a great aid for aiding in implementing such systems.

The knowledge of rate limiting enzymes in the system is key 
to fully characterize such synthetic systems. Classically, these are 
established based on their kcat values. How these rate limiting enzymes 
in combination with the other enzymes influence the productivity of 
the system is difficult to assess in the wet lab. This assessment proceeds 
mainly by testing various conditions through a trial and error strategy 
or more rationally design experiments. Previous published data by 
Ye et al. [5] and Ardao et al. [9] showed that enzyme E13 is the main 
limiting factor in the system because it is the enzyme directly implicated 
in hydrogen synthesis (Supplementary Table 1). To a lesser degree, 
enzymes E1, E2, E3 and E4 were also declared as limiting enzyme. 

We wanted to re-evaluate how these enzymes are key towards 
productivity of this synthetic system. What simulation and 
optimization advantageously allow is to test millions of different 
conditions in-silico that is inaccessible experimentally and give access 
to the range of values for every parameter that allows near-optimal 
productivity of the system. The analysis of these range of values showed 
that E3, E4 and E13 enzymes had more impact on the productivity. 

Indeed, their parameters allowed a near-optimal productivity in a very 
narrow range of values (Figure 3). Thus, this indicates that, beyond 
these values, the productivity would be sub-optimal. For the other 10 
enzymes, variations in their kinetic properties impacted less on the 
productivity of the system, for their values could fluctuate with greater 
amplitude while the system remained close to optimal productivity. To 
further provide evidence for the importance of these three enzymes, 
single stage optimization was re-run using only the parameters 
coming from E3, E4 and E13. The near-optimal H2 production that 
could be reached when E0, Km and kcat for these three enzymes were 
optimized is shown in Table 2. They are in very good agreement with 
those featured in Table 1 thus indicating that these three enzymes are 
indeed key enzymes for the productivity of the system. Though Ardao 

Figure 3: Distribution of optimal values for E0, kcat and Km obtained from 
multiple single stage optimizations.
Under these conditions, near-optimal H2 production was obtained. Horizontal 
bars indicate average values. Top left shows results after optimization of E0 
for all 13 enzymes; cellobiosephosphorylase (E1), phosphoglucomutase 
(E2),glucose-6-phosphate dehydrogenase (E3), 6-phosphogluconic 
dehydrogenase (E4), ribose 5-phosphate isomerase (E5),ribulose-5-
phosphate 3-epimerase (E6), transketolase (E7), transaldolase (E8), triose-
phosphate isomerase (E9), aldolase (E10), fructose-1,6-bisphosphatase (E11), 
phosphoglucoseIsomerase (E12), NADP+dependent hydrogen dehydrogenase 
(E13). Top right shows results after optimization of kcat for all 14 reactions (see 
Method and Supplementary Table 1 for detailed description of the reactions); 
Bottom are the results after optimization of Km for all 19 substrates (1:KmPiof 
reaction r1; 2:KmCb of r1; 2:KmCb of r2; 3:KmG1P of r2; 4:KmG6P of r2; 5:KmG6Pof 
r3; 6:KmNADP of r3; 7:Km6PG of r4; 8:KmNADP of r4; 9:KmRu5P of r5; 10:KmRu5P of 
r6; 11:KmDHAP of r9; 12:Kmg3P of r9; 13:KmDHAP of r10; 14:Kmg3P of r10; 15:KmFdP 
of r11; 16:KmF6Pof r12; 17:KmG6P of r12; 18:KmNADP of r13; 19:KmNADPH of r13).
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et al. [9] had shown the importance of these enzymes but only within 
the framework of E0 optimization, to our knowledge, this is the first 
time that this is documented for the Ye et al. [5] synthetic system after 
optimization of E0, Km and kcat. The biology of these enzymes tells us 
that indeed their activities influences directly hydrogen production: 
E13 (NADP+ dependent hydrogen dehydrogenase) catalyzes the main 
reaction in charge of hydrogen production using NADPH, while E3 
(glucose-6-phosphate dehydrogenase) and E4 (6-phosphogluconic 
dehydrogenase) are the dehydrogenases that produce NADPH needed 
by E13.

We further applied the double stage optimization protocol 
described in Method section whereby, consecutive to a single stage 
optimization on a parameter and after retaining its optimal values 
for all the enzymes, a second optimization step was performed on a 
second parameter. This should, in principle, improve the final H2 
concentration when compared to a single stage optimization. After a 
first optimization on E0, a second optimization was performed on Km 
and λ separately, either on all enzymes or only on enzymes E4 and E13. 
As shown in Table 3, these double optimization drastically augmented 
the final H2 concentration compared to single stage optimizations 
performed on E0, Km and λ (Tables 1 and 2). Although the optimization 
of λ alone was ineffective, the coupling E0+λ optimizations allowed 
having almost 95% of the maximum theoretical H2 production. The 
E0+Km double stage optimization showed that there are sets of values 
for these two parameters whereby the system can achieved about 98% 
maximum productivity. The optimal values found for these parameters 
are basically theoretical values. As discussed above, it is quite easy in 
practice to modulate E0 experimentally towards their derived optimal 
values. However, changing the affinity of an enzyme for its substrate 
or improving its thermodynamic stability is more complicated and 
requires better performing homologous or engineered enzymes.

Analysis of kinetics of hydrogen production in optimized 
systems

The previous optimization procedure was executed to improve the 
final concentration of H2 after 9000 min operation. We analyzed the 
kinetics of H2 production for each of the optimization protocol that we 
have investigated, whether it was the single stage optimization or double 
stage optimization. Indeed, the velocity at which final concentration 
of hydrogen is reached in the system is an important criteria in terms 
of productivity. The kinetics of H2 production for optimal conditions 
found through the four single stage optimization protocols and 
through the “E0+Km” and “E0+λ” double stage optimization protocols 
are given in Figure 4. As expected, the best kinetics was obtained by 
optimizing kcat. The initial rate calculated from slope at t=0 (Figure 4) 
is 2,6 mmol.L−1.min−1 H2. Though double stage optimizations on E0+Km 
or E0+ λ had similar final H2 yields as single stage optimization on 
kcat, i.e final concentration of H2 of about 800 mM (Figure 4, Tables 
1 and 3), their kinetics were however different. For short production 
runs, inferior to 2000 min, optimization by kcat is more advantageous 
(Figure 4). For longer times of operations, both single stage and double 
stage optimizations will yield almost equivalent final concentrations of 
hydrogen. 

Our in silico optimizations hence allowed us to find the theoretical 
ideal conditions (i.e values of E0, Km, kcat and λ for all enzymes) that 
optimizes the synthetic system for production of hydrogen. Our results 
clearly highlight which enzymes must be improved in order to achieve 
better performance of the system. These are interestingly E3 (glucose-
6-phosphate dehydrogenase), E4 (6-phosphogluconic dehydrogenase) 

and as expected, E13 (NADP+ dependent hydrogen dehydrogenase). 
Improvement of their performance can be obtained either by finding 
better performing homologous enzymes from the biodiversity or 
through enzyme engineering.

An online ODE simulator for the cell-free system

We have developed a web-based simulator that implements the 
ODE model for the Ye et al. [5] cell-free system. The simulator is freely 
available at http://www.bo-protscience.fr/h2/ for non-commercial 
usage. Users can freely tweak with the kinetic parameters and initial E0 
and substrate concentrations. The kinetic laws and the default values 
for the kinetic parameters are those provided in Supplementary Table 
2. Default conditions for the initial concentrations are those indicated 
in the Method section. The user is provided with a customizable result 
page: an interactive Google Charts graphic displaying the evolution of 
the concentration of a substrate, an intermediate metabolite or of the 
product is displayed. The user is provided with the option to choose 
which compounds to display. It is also possible to download the whole 

Figure 4: Evolution of hydrogen concentrations (left) and rates of H2 production 
(right) using optimal values of the parameters that were optimized by single or 
double stage optimization protocols.
The parameters that were optimized by single stage optimization are enzyme 
initial concentration (E0), enzyme degradation parameter (λ), enzyme substrate 
affinity (Km) and enzyme turn-over (kcat). The combination of parameters that 
were optimized by double stage optimization was E0+λ and E0+Km. Simulations 
time were of 9000 min with 70 mM cellobiose, 70 mM of phosphate and 1mM 
of NADP as starting substrate concentrations.

http://www.bo-protscience.fr/h2/
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Figure 5: Performance of ANN models to predict the initial rate of production 
of H2 (top) and final hydrogen concentration (bottom) for 625 data points from 
the validation dataset.
The models were built on input/output vectors from 32 simulations (BaseA) 
and 12 simulations (BaseB). Straight line on each graph represents bisector. 
Values on x and y axis are normalized values for both rate of H2 production 
and final H2 concentration.

simulation results in the form of a flat text file containing comma 
separated values of concentration for all metabolites as a function of 
time. This simulator for example can be useful to test very simply how 
the improvement of an enzyme would impact the H2 production.

Using artificial neural networks to model H2 productivity of the 
cell-free system, two ANN models were built (see Methods section), 
one for predicting the rate of H2 production and another for predicting 
the final H2 concentration. Results for these two models built after the 
“Base zero” dataset which is derived from 65,536 simulations of H2 
production are given in Table 4. These results show that, both ANN 
models which had a 5-neurons hidden layer were able to predict 
accurately the kinetics and the yield of the synthetic system. This shows 
that, provided a database of H2 production trajectories is available, it 
is possible to model the output of this H2 producing synthetic system 
with the prior knowledge of the starting conditions, i.e the inputs. 

In real life situations, it is impossible to generate experimentally 
such a large database because of cost and time constraints (for 65,536 

runs of the system each of 9,000 minutes, 409,600 days would be 
required and total would cost more than 10 million USD). In fact, we 
wanted to approach real life situations by building smaller training 
datasets following experimental design principles and check whether 
these are sufficient to generate good models using ANN. We hence 
investigated the ability of ANN to build good models with two much 
smaller training datasets. The first dataset, “Base A”, was built from 
32 simulations and the second dataset, “Base B”, was derived from 12 
simulations. After training with these two datasets, we evaluated how 
the ANN models accurately predicted the rate of production and the 
final concentration of H2. Detailed results given in Table 5 show indeed 
that, with as few as 12 and 32 inputs/outputs in the training set, the 
ANN models can remarkably predict with good accuracy both the 
kinetics and yield of the H2 producing system with RMSE < 0.36 and 
R2>0.86. Figure 5 shows the corresponding scatter plots for the “Base 
V” validation dataset which comprises 625 data points. The data were 
all normalized between 1, −1 prior to the learning phase (see Method). 
Interestingly, the models predicted values superior to 1 and inferior 
to −1. The validation dataset contained data points that were indeed 
beyond these boundaries but the models were less accurate in these 
areas. Overall, rate of H2 production was predicted with lower RMSE 
than for final H2 concentration (Table 5) and as illustrated by the 
lesser dispersal of the data points away from the bisector line (Figure 
5). Interestingly, “Base A” and “Base B” generated ANN models with 
very similar RMSE and R2 values on the validation set and with overall 
performance close to the more accurate models built with the much 
larger “Base zero” dataset. This indicates that ANN is quite robust to 
the size of learning datasets provided that the learning datasets are 
appropriately designed. It also indicates that restraining the ANN 
inputs to only the 3 rate limiting enzymes and to the starting substrates 
(as for “Base B”) is indeed an interesting design strategy. Also, it can 
be concluded that small learning datasets which are easier to construct 
experimentally can provide very satisfactory models for predicting 
kinetics and yield of such a synthetic system.

Conclusion
Modeling is relevant to understand, manipulate, and evaluate 

a biochemical system. From the works of Ye et al. and Ardao et al. 
[5,9], we have implemented a knowledge-based model under the 
SBML format. System metabolites and the interaction between them 
during reactions were numerically encoded in ODE which allowed 
us to perform in silico optimizations and to provide answers as for 
how to improve of hydrogen production. We stated different system 
modifications that would yield higher hydrogen productivity. Among 
these, the manipulation of the initial concentration of enzyme (E0) is 
the easiest to reproduce experimentally. The manipulation on the kcat 
is best to achieve optimal performance of the system. Optimization on 
Km and enzyme degradation constants can be looked for but they had 
less impact on the system. 

We studied double stage optimization combining E0 with Km or 
λ. The advantage of these double stages optimizations is that they can 
be easily applied experimentally. As it is difficult to find or engineer 
enzymes with improved kcat, this double stage optimization involving 
E0 in first stage and Km or λ optimization in second stage is a very good 
alternative.

In the same line, we evaluated the most pertinent set of enzymes 
for optimization so as to reduce the combinatorial complexity of 
the experimental design. Three enzymes, E3 (glucose-6-phosphate 
dehydrogenase), E4 (6-phosphogluconic dehydrogenase) and E13 

Initial rate of H2 
production (kinetics 

model)

Final H2 concentration  
(yield model)

RMSE R2 RMSE R2

Autoprediction 0.006 0.99 0.031 0.996

k-fold cross-
validation (k=10) 0.006 1 0.043 0.992

Validation 0.202 0.952 0.324 0.905

Table 4: Performance of ANN models built on the “Base zero” dataset. This learning 
dataset is composed of input and output vectors derived from 65,536 different 
simulations of the H2 producing system. Shown are the Root Mean Square Errors 
(RMSE) and the coefficient of determination (R2) of the kinetics and yield models. 
Results for autoprediction and k-fold cross validation were evaluated on the 
learning dataset itself. Results for validation were evaluated on the independent 
“Base V” dataset (see Method for details).
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(NADP+ dependent hydrogen dehydrogenase) that were limiting for 
H2 production, were identified through our simulations. E3 and E4 are 
indeed producing NADPH that is required by E13 which is directly 
involved in H2 production. Restraining the optimization to these three 
enzymes showed to yield near-optimal H2 production. 

All these results provide new insights into the properties of 
the cell-free system of Ye et al. [5]. Though, this study is based on 
simulations. The effectiveness of the method needs further validation 
using real experimental data. Other cell-free systems for hydrogen 
production were recently designed [14,15]. It could be interesting to 
likewise apply on these systems the same modeling and optimization 
approaches we used here. But ODE models require the knowledge of 
kinetic parameters and laws for these new enzymatic systems. These 
information are not always fully available and may remain unknown 
for long. We explored a modeling approach by ANN to have a global 
overview of the performance of a synthetic system through the 
sole knowledge of few initial enzyme and substrate concentrations 
and the corresponding outputs. This approach requires hence only 
empirical data. We used the cell-free system of Ye et al. [1] as object 
of modeling and our knowledge-based ODE model as generator of 
empirical data. We showed that ANN model with practical dataset sizes 
allowed accurate prediction of the kinetics and yields of the system. 
The knowledge of the limiting enzymes was interesting since it allows 
simplification of the experimental design for constituting the learning 
database. Our ANN model works better to predict the initial rate of H2 
production than the final concentration of hydrogen. Further works 
are needed to elaborate a way to resolve this case.

ANN approach hence gives very basic information about the kinetics 
of the system but it can still be useful meanwhile more accurate models 
like ODE models are made available. Further, since the inputs of ANN 
are the initial concentrations of the starting substrates and enzyme, 
it is also conceivable to build an optimization protocol to search for 
ANN-derived optimal starting conditions. This study is solely based on 
simulations. The effectiveness of the methods need further validation 
using real experimental data. In particular, it is at stake to demonstrate 
experimentally how higher yields could be achieved by substituting key 
enzymes identified in this study by better performing versions.
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