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Editorial
With the development of high-throughput, next-generation

sequencing and other advanced technologies, a large number of gene
expression profiles have been produced. Many of these profiles are
available from public databases [1-3]. A challenging research problem
that has drawn a lot of attention in the past is to infer gene regulatory
networks from the expression data. A gene regulatory network is
represented by a directed graph, in which nodes represent
transcription factors or mRNA with edges showing transcriptional
regulatory relationships between two nodes.

Maetschke et al. [4] categorized existing network inference methods
into three groups: unsupervised, supervised and semi-supervised.
While supervised algorithms are capable of achieving the highest
accuracy among all the network inference methods, these algorithms
require a large number of positive and negative training examples. An
example here refers to an edge between two nodes in a network. A
positive example refers to a known interaction between two genes
while a negative example refers to an interaction that is known not to
exist between two genes. Negative examples are difficult to obtain in
many organisms. Instead, some researchers use unknown interactions
between genes for negative examples. Unsupervised algorithms infer
networks based solely on gene expression profiles and do not need any
training examples. The accuracy of these algorithms is usually low.
However, these algorithms are useful for organisms where training
data are not available. Semi-supervised algorithms often exploit
positive-unlabeled (PU) learning techniques by taking a small sample
of positive examples and a large number of unlabeled examples to train
a classification model and use the trained model to predict a network.

Marbach et al. [5, 6] developed an in silico benchmark suite within
the DREAM (Dialogue on Reverse Engineering Assessment and
Methods) project [7, 8], and assessed the performance of 29 network
inference methods. They concluded that reliable network inference
from gene expression data remains an unsolved problem.
Madhamshettiwar et al. [9] evaluated nine state-of-the-art gene
regulatory network inference methods using 38 simulated datasets.
These authors observed that the performance of the evaluated methods
depends on many factors such as features of the data, network size and
topology, as well as parameter settings. Indeed, the parameter settings
often affect the accuracy of a network inference method, and
identifying the optimal parameter values is a very challenging task.

Recently the network inference problem has been approached from
many different perspectives, including:

• using hybrid and pipeline techniques to enhance the performance
of unsupervised methods [10];

• employing advanced data mining and machine learning algorithms
to improve the accuracy of supervised or semi-supervised methods
[11];

• using new techniques to tackle constrained or condition-specific
network inference problems [12, 13]; and

• adopting GPU and cloud technologies to speed up the execution of
network inference algorithms [14].

These different directions are presenting new opportunities for
researchers working in this field.
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