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Introduction
Systemic inflammatory response syndrome (SIRS) typically causes 

multiorgan dysfunction and is frequently triggered by a harmful 
host response to primary infection (sepsis) [1,2]. Lipopolysaccharide 
(LPS) has been widely used in animal models to unravel pathological 
mechanisms of SIRS-related organ failure. Initially recognized by extra 
renal Toll-like receptor 4 (TLR4) [3], LPS triggers the production of 
cytokines and nitric oxide, and consequentially causes sympathetic dis 
regulation, alterations of endothelium and leukocyte organ infiltration. 
All these events were proposed to contribute to the induction of acute 
kidney injury AKI [2,4-6]. 

The endotoxin-induced inflammatory syndrome and related organ 
dysfunction are triggered by a variety of molecules. Mostly using animal 
models, a crucial role of CD44 has been demonstrated in mediating 
the progression of a variety of inflammatory diseases [7-11], including 
endotoxemia [12-15]. Conversely, some studies highlight an anti-
inflammatory role of CD44 since it can contribute to the termination 
of inflammation by clearing apoptotic neutrophils and hyaluronan 
(HA) fragments from the site of injury [16,17] and by promoting the 
expression of negative regulators of TLR4 signaling [18-20].

CD44 is expressed on multiple cell types, including haematopoietic, 
mesenchymal, epithelial, and endothelial cells, and has several ligands, 
which differ per isoform [11,21]. CD44 transmembrane glycoproteins 
are encoded by a single gene of 20 exons, of which 11 are alternatively 
spliced “variant exons” (exons 6-15 and 19-20). The standard isoform, 
CD44s, is encoded by solely constant exons (exons 1-5 and 16-20), 
and is the shortest and most widely expressed isoform. Inclusion of 
the variant exons lengthens the extracellular domain (exons 1-17), 
creating larger isoforms and exposing binding sites for additional 

posttranslational modifications and ligand-binding sites [22]. CD44 
glycoproteins mediate cell-responses to the cellular microenvironment, 
interacting with growth factors, chemokines, matrix metalloproteases 
and components of the extracellular matrix [21,23,24]. During 
inflammatory kidney diseases, renal CD44 expression, which is 
generally absent, is markedly enhanced, particularly in injured proximal 
tubular epithelial cells (TEC) [25-32]. In ischemia-reperfusion-
mediated AKI, we previously found that lack of CD44 diminishes 
renal dysfunction, tubular damage and macrophage and granulocyte 
influx [28]. Until now, it remains unclear what are the implications 
of tubular CD44 expression during renal injury and moreover what 
are the differential functional properties of specific CD44 isoforms 
such as the shortest CD44s and the long-variant CD44-variant-3 
(CD44v3, CD44v3-v10). The latter contains variant exons 3 to 10 and 
is a heparan sulfate (HS)-binding isoform of CD44 [21]. Both isoforms 
are induced in injured TEC and, having distinct extracellular domains, 
can exert diverse functions. Indeed, in a previous study, we showed 
that these two isoforms have opposite effect in fibrotic settings [29]. 
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CD44s is essential for some of the transforming growth factor (TGF)-
β1-mediated actions [29-34]. Being a heparan sulfate proteoglycan, 
CD44v3 can interact with multiple molecules, such as hepatocyte 
growth factor (HGF) and vascular endothelial GF (VEGF) [21], and it 
might bind pro-inflammatory cytokines [11,35]. 

It is evident that the function of CD44 in inflammation is complex, 
involving multiple cell types, ligands, and intracellular pathways. It is 
therefore important to clarify the contribution of CD44 and of each 
isoform in inflammatory processes.

The present study aimed to assess the effects of renal tubular 
expression of CD44s and CD44v3 in SIRS-associated renal injury using 
wild-type (WT) and transgenic mice that express either CD44s or 
CD44v3 specifically on proximal TEC.

Methods
In vivo experimental design

Transgenic mice overexpressing either CD44s or CD44v3 
specifically in proximal tubules are on a C57BL/6 background and were 
previously described [29]. In order to target proximal tubular cells, 
transgene expression was set under the control of the 5’ regulatory 
promoter region of the γ-glutamyl transpeptidase type 1 gene [36].

Eight to 12 weeks old pathogen-free male C57BL/6 wild-type (WT) 
mice and CD44s/v3-transgenic mice (n=7-8 per group) were subjected 
to intraperitoneal injection of 10 µg/g body weight LPS (Escherichia 
coli O111:B4, Sigma-Aldrich). Sham mice received saline solution. 
Mice were sacrificed by cardiac exsanguination 4 and 24 hours after 
LPS injection and 4 hours after saline solution injection. Blood was 
drawn in heparinized tubes and half kidneys were snap-frozen in liquid 
nitrogen or fixed in 10% formalin. Mice body weight was measured 
at the time of injection and at the time of sacrifice. The Institutional 
Animal Care and Use Committee of the University of Amsterdam 
approved all animal experiments.

Immunohistochemistry, histological scoring and renal 
function

Renal tissues were fixed in 10% formalin for 24 hours 
and subsequently embedded in paraffin in a routine fashion. 
Immunohistochemistry stainings (immunostaining) were performed 
on 4 µm renal sections using anti-CD44 (IM7.8.1, BD Pharmingen), 
anti-active-caspase-3 (Cell Signaling), anti-CD3 (BD Pharmingen). 
Hyaluronan was detected by biotinylated HA-binding protein 
(Calbiochem). Slides were developed using HRP-labeled secondary 
antibody (DAKO) and DAB (Sigma-Aldrich). As previously described, 
quantification of immunohistochemistry stainings was assessed in the 
cortex and cortico-medullary area by counting positive cells per high 
power field (HPF, x40 magnification) or by measuring the positive areas 
in 10-15 HPF (x20) pictures per slide using ImageJ software (National 
Institute of Health, US) [29]. Results are shown as positive area in 
percentage of the total area analyzed. For assessing renal function, 
plasma urea concentration was measured by standard diagnostic 
procedure suitable for detection of samples of murine origin.

ELISA

Heparinized blood was centrifuged at 10000 rpm for 10 minutes 
and plasma was harvested. Frozen kidneys were homogenized in lysis 
buffer (150 mM NaCl, 15 mM Tris, 1 mM MgCl2 pH 7.4, 1 mM CaCl2, 
1% Triton) with addition of 1% protease inhibitor cocktail (P8340, 
Sigma). Specific ELISAs (R&D Systems) were utilized to measure 

MCP-1, TNF-α, IL-1β, IL-10, HGF, and TGF-β1 in plasma or kidney 
homogenates, according to the manufacturer instructions.

Quantitative Real-time PCR

Total RNA was extracted from 10 frozen renal sections (30 µm 
thick) with Trizol reagent (Invitrogen). RNA was converted to cDNA 
using oligo-dT primers. Quantitative real-time PCR (Q–PCR) was 
performed on a LightCycler® 480 System (Roche) using SYBR Green-
SensiMix (Bioline). SYBR green dye intensity was analyzed with 
linear regression analysis. Transcript expression was normalized 
towards the housekeeping gene TATA-box binding protein (TBP). 
Amplified genes and primers sequences are as follows: TBP forward 
(F) 5’-caggagccaagagtgaagaac reverse (R) 5’-ggaaataattctggctcatagctact, 
CD44-pan F 5’-tccgaattagctggacactc R 5’-ccacaccttctcctactattgac, 
CD44s F 5’-ttctggaatctgaggtctcc R 5’-caccttggccaccagagatcg, 
CD44v3 F 5’-catcatcaatgcctgatcca R 5’-agtcaaataccaacccaacag, 
TLR4 F 5’-ggactctgatcatggcactg R 5’-ctgatccatgcattggtaggt, 
kidney injury molecule-1 (KIM-1) F 5’-tggttgccttccgtgtctct R 
5’-tcagctcgggaatgcacaa, neutrophil gelatinase-associated lipocalin 
(NGAL) F 5’-gcctcaaggacgacaacatc R 5’-ctgaaccattgggtctctgc, A20 
F 5’-gggactccagaaaacaaggg R 5’-tacccttcaaacatggtgctt, interleukin-1 
receptor-associated kinase-3 (IRAK-3) F 5’-catctgtggtacatgccagaa R 
5’-acctccatgatcacgattcc, suppressor of cytokine signaling-1 (SOCS-1) 
F 5’-gacactcacttccgcacctt R 5’-aagaagcagttccgttggc. All primers were 
manufactured by Biolegio.

Data analysis

Kruskal-Wallis analysis and Dunn’s multiple comparisons test 
were applied to evaluate statistically significant differences among the 
three mice strains. Mann-Whitney U test was used to compare LPS-
injected group to its respective control sham group. Data are shown as 
mean and standard error of the mean (SEM); p<0.05 was considered 
to be significant.

Results 
Systemic effects and renal CD44 expression

SIRS was equally induced in all mice upton LPS administration. 
All mice displayed a significant body weight loss after 24 hours 
(Supplementary Figure 1A), and plasma levels of MCP-1 and TNF-α 
were found upregulated 4 hours after injection in comparison to 
sham animals (Supplementary Figure 1B and C). Surprisingly, TNF-α 
plasma levels were higher at 4 hours in CD44v3-mice in respect to 
WT (Supplementary Figure 1C). Since in others renal pathological 
conditions, CD44 expression is induced in the kidney parenchyma 
[27-29,31,32,37], we assessed renal expression of CD44 by Q-PCR 
and immunostaining. Q-PCR analysis showed that CD44 transcripts 
were upregulated at 4 and 24 hours in all mice groups in respect to 
sham (Figure 1A). Isoform-specific Q-PCR (Figure 1B and C) and 
immunostaining for CD44 (Figure 1D) revealed that solely CD44s 
or CD44v3 were overexpressed in sham kidneys of transgenic mice 
and their expression was restricted to the basolateral membrane of 
proximal TEC [29]. After LPS administration, CD44-positive cells were 
localized in the interstitium and glomeruli in WT kidneys and also at 
the basolateral membrane of TEC in kidneys of transgenic mice (Figure 
1D).

A strong expression of CD44 on renal tubules, glomeruli and 
interstitial cells was found in a kidney biopsy derived from a septic 
patient who developed acute renal insufficiency (Supplementary Figure 



Citation: Rampanelli E, Claessen N, Teske GJD, Leemans JC, Florquin S (2015) Expression of CD44s and CD44v3 by Proximal Tubules Influences 
the Renal Inflammatory Milieu-Induced by LPS Injection. J Nephrol Ther 5: 196. doi:10.4172/2161-0959.1000196

Page 3 of 7

Volume 5 • Issue 2 • 1000196J Nephrol Ther
ISSN: 2161-0959 JNT, an open access journal

 Renal function and tubular damage

It has been previously reported that LPS causes mild morphological 
changes in renal tissues, including tubular cell sloughing and loss of 
brush border [2,6]. These minimal histological changes were visible 24 
hours after LPS administration and similar in all groups (Figure 2A). 
Renal function was assessed by measuring plasma urea levels (Figure 
2B). Blood urea levels were significantly increased at 4 hours and 
picked at 24 hours in all mice strains as compared to sham. At 4 hours, 
CD44v3-mice showed a small but significant reduction in plasma urea 
levels as compared to WT mice.

Next, we evaluated the mRNA expression of the early markers 
of tubular injury KIM-1 and NGAL [38], which gradually increased 
in time after LPS administration in all strains (Figure 2C and D). 
The overexpression of both CD44s and CD44v3 resulted in a higher 
expression of KIM-1, which is a marker specifically induced in 
proximal tubules after damage [39]. No significant differences among 
the strains were found in the levels of NGAL, which is expressed in the 
distal nephron segments [40]. 

Finally, we assessed the apoptosis rate of tubular cells after LPS 
challenge. The number of apoptotic TEC increased in time during 
endotoxin shock, but was however minimal and similar among the 
groups (Figure 2E).

Renal inflammatory cell influx and cytokine release.

During SIRS, the initial cytokine storm leads to upregulation of 
endothelial adhesion molecules and, hence, leukocyte extravasation 
and amplification of imflammation in multiple organs [3]. 
Immunohistochemistry staining for CD3 revealed an equal influx of 
lymphocytes into kidneys of all 3 mice strains (Figure 3A).

Next, we measured the levels of pro-inflammatory (MCP-1, 
TNF-α, IL-1β) and anti-inflammatory (IL-10, HGF, TGF-β1) cytokines 
produced in the kidneys upon LPS administration (Figure 3B-G). As 
expected, all cytokines were upregulated in kidneys of LPS-treated 
mice, although some differences were found in the levels of TNF-α, IL-
1β at 4 hours with less expression in the CD44s- and CD44v3-kidneys as 
compared to WT kidneys. Interestingly, at 24 hours IL-10 production 
remained high in the CD44v3-kidneys, whereas it decreased to basal 
levels in WT and CD44s-kidneys.

Successively, the induction of the endogenous negative regulators 
of the TLR4/NF-κB pathway [41] was evaluated by Q-PCR analysis 
(Figure 3H-J). Gene expression of A20, IRAK-3 and SOCS-1 was greatly 
increased at 4 hours in all groups in a similar manner. Strikingly, at 24 
hours the presence of CD44v3 on TEC resulted in significantly higher 
levels of the three regulators in respect to WT and CD44s-kidney levels, 
in accordance to the IL-10 expression pattern. It is to be noted that 
the expression of TLR4 mRNAs in the kidneys was similar among the 
strains before and after LPS treatment (Figure 3K).

Discussion
Sepsis is a major public health problem being the leading cause 

of death in non-coronary intensive care units [42]. Development of 
AKI during sepsis is associated with prolonged hospitalization and 
a higher mortality rate (70% versus 45% rate of acute renal failure 
alone) [2,43]. It remains therefore imperative to better understand the 
pathophysiology of sepsis and SIRS-associated AKI and to identify new 
targets in order to improve septic shock treatment.

Here, we studied the potential role of CD44s and CD44v3 
expression by TEC in the progression of SIRS-induced AKI. Although, 
the presence of CD44 isoforms did not substantially alter the onset of 

Figure 1: (A) Q-PCR analysis for CD44-pan, (B) CD44s, and (C) CD44v3 expression in kidneys of WT (white bars), 
CD44s- (black bars) and CD44v3-transgenic mice (stacked bars). Data normalized for TBP expression levels. (D) Rep-
resentative micrographs (x20) of CD44 immunostaining in renal paraffin sections of WT and CD44s- and CD44v3-trans-
genic mice in sham condition and 24h after LPS-injection. Mean + SEM, n=7-8, *=p<0.05, #=p<0.05 vs sham.
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kidney dysfunction upon LPS injection, their expression influenced 
the induction of KIM-1 and the levels of pro- and anti-inflammatory 
cytokines in kidneys after LPS treatment.

SIRS was equally triggered by intraperitoneal injection of LPS in 
all mice strains; consequently, similar numbers of lymphocytes were 
found in the kidneys of LPS-treated mice. The difference in blood levels 
of TNFα between CD44v3- and WT-mice at 4 hours appears not to be 
particularly relevant for the renal outcome as it does not associate with 
the rate of renal infiltrates, cytokines, or renal dysfunction.

The changes induced by LPS injection in the kidneys are mainly 
vascular, whereas tubules undergo slight vacuolization and loss of 
brush border and few TEC undergo apoptosis [2,6]. Presumably due 
to these minimal tubular changes, CD44 expression was not induced 
in tubules of murine WT kidneys upon LPS injection. This contrasts 
what is reported for other renal inflammatory disorders, such as 
human IgA nephropathy [27], and renal transplants [31,32], murine 
renal ischemia-reperfusion injury [28], unilateral ureteric obstruction 
injury [29,44], interstitial nephritis [30], and lupus nephritis [26]. We 

cannot anyhow exclude an induction of renal tubular CD44 expression 
in human cases of severe sepsis with serious renal complications. In a 
kidney biopsy from a patient with tubulonecrosis and AKI subsequent 
to streptococcal septicemia, CD44 was found expressed in renal 
tubules, glomeruli and interstitial cells; unfortunately, this was the only 
renal biopsy of SIRS patients present in our tissue bank.

In the early acute phase of SIRS, WT tubular cells, which lack CD44, 
displayed lower levels of KIM-1 in comparison to TEC overexpressing 
CD44s/v3. KIM-1 expression levels did not correlate with kidney 
dysfunction, which was similar among the different groups. KIM-1 and 
NGAL are sensitive biomarkers of renal injury and their expression 
precedes kidney dysfunction [38]. The fact that only KIM-1 and not 
NGAL shows different expression levels in the transgenic mice as 
compared to WT animals can be attributed to its expression in the 
proximal tubules [39], whereas NGAL is mainly expressed in the distal 
part of tubules [40]. Given the similarity in blood urea levels among the 
strains, it remains difficult to explain the higher expression of KIM-1 
in the transgenic mice at 4 hours. As transgenes are expressed solely in 

Figure 2:  (A) Representative micrographs (x20) of PAS-D stained renal sections of sham and 24h-LPS treated animals. (B) Renal function assessed by measure-
ment of urea levels (mmol/L) in plasma of WT (white bars), CD44s- (black bars) and CD44v3-transgenic mice (stacked bars). (C) Q-PCR analysis for KIM-1 and 
(D) NGAL gene expression. Values corrected for TBP transcript levels. (E) Quantification of tubular cell apoptosis rate by counting active caspase-3+ TEC per HPF 
(x40). Mean + SEM, n=7-8, *=p<0.05, #=p<0.05 vs sham
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proximal tubules, it is reasonable to conclude that the dissimilarities in 
renal cytokine levels are mediated by diverse behavior of the proximal 
TEC and not by inflammatory cells, which are identical in WT and 
transgenic mice. This implicates an active action of proximal TEC 
during SIRS-induced AKI. In culture, primary tubular cells have been 
shown to respond to LPS by inducing cytokine expression [45,46]. 

CD44v3 facilitates HGF-receptor binding and signaling [21,47]; 
we and others showed a link between CD44s expression and higher 
TGF-β1/Smad-signaling [29,33,34]. In this model, both HGF and 
TGF-β1 are beneficial as both molecules can exert anti-inflammatory 
effects. Thus, the facilitation of HGF and TGF-β1 signaling pathways 
by CD44v3 and CD44s, respectively, explain, at least in part, the 
lessened production of pro-inflammatory cytokines in the kidneys of 
transgenic mice.

Surprisingly, 24 hours post-injection, CD44v3-kidneys displayed 
an elevated rate of the anti-inflammatory cytokines IL-10 and HGF, 
together with an increased gene expression of the negative regulators 

of the TLR4 signaling.

Previous studies described CD44 as a negative regulator of 
inflammation due to induction of TLR4 signaling inhibitory molecules 
[18-20]. We can speculate that this anti-inflammatory function is 
exerted at least by the CD44 variant-3 isoform, as the presence of 
CD44s did not result in higher levels of A20, IRAK-3 or SOCS-1. Muto 
et al. showed that hyaluronan (HA) can induce A20 expression via 
CD44 and TLR4 [20]. Although all CD44 isoforms have a HA-binding 
site, the binding affinity to HA differs per isoform and cell-type, and is 
regulated by posttranslational modification: e.g. addition of heparan 
sulfates decreases the CD44-mediated binding to hyaluronan [48]. 
Hence, HA-CD44 interaction is not likely to be the main mechanism of 
induction of TLR4 negative regulators, which are highly expressed only 
in CD44v3-kidneys and not in CD44s-kidneys, besides similar levels of 
renal interstitial hyaluronan between the two transgenic strains (data 
not shown).

Although induced by LPS, interleukin-10 provides protection 

Figure 3: Renal inflammation. (A) Evaluation of lymphocyte influx by digital image analysis of CD3-stained paraffin renal sections from WT (white bars), 
CD44s- (black bars) and CD44v3-transgenic mice (stacked bars). Data expressed as percent positive area of the total areal analyzed.  (B) Renal expression 
(pg/mg proteins) of MCP-1, (C) TNF-α, (D) IL-1β, (E) IL-10, (F) HGF and (G) TGF-β1. (H) Gene expression of A20, (I) IRAK-3, (J) SOCS-1 and (K) TLR4 
in kidneys, assessed by Q-PCR assays. Values corrected for number of TBP transcripts. Data expressed as mean + SEM, n=7-8, *=p<0.05, #=p<0.05 vs 
sham.
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against LPS-induced septic shock [49]. IL-10 inhibits the rate of 
transcription of LPS-induced inflammatory genes and triggers the 
expression of NF-κB-inhibitory molecules [50], providing a plausible 
explanation for what occurs in the CD44v3-kidneys at 24 hours. 
These anti-inflammatory effects have been shown to be mediated in 
part by STAT-3 and heme oxygenase-1 (HO-1) [49,50], both of which 
in turn can mediate IL-10 upregulation [51,52]. HO-1 is induced by 
HGF and provides protection against endotoxemia [52,53]. We could 
hypothesize that CD44v3, via binding HGF and facilitating its signaling, 
could cause HO-1 upregulation, and hence production of IL-10, which 
in turn triggers, through STAT-3/HO-1, expression of TLR4/NF-κB 
pathway-inhibitory molecules. Interestingly, Lee et al. demonstrated 
that, once internalized and translocated into the nucleus, CD44 forms 
a complex with STAT3 and p300 acetyltransferase, eliciting STAT3 
acetylation and its consequential activation [54].

Beyond sepsis/SIRS studies, many reports demonstrated a crucial 
role of CD44 in inflammation and the beneficial effects of anti-
CD44 therapies in several inflammatory diseases, including renal 
ischemia-reperfusion injury [28], collagen- and proteoglycan-induced 
arthritis [7], cutaneous inflammation [8], experimental autoimmune 
encephalomyelitis [9], and IL-2-induced vascular leak syndrome [10]. 
The mentioned studies targeted mainly CD44 on leukocytes. 

CD44 is expressed by a variety of cells, and its functions differ 
depending on the cell-type and/or ligand. Our results suggest that 
proximal tubular cells can directly influence the renal inflammatory 
milieu and propose a role of CD44v3 in limiting renal inflammation.
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