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Abstract

Multiple hereditary exostoses is an autosomal dominant inherited disease causing exostoses: growth on the
bones of children. The disease is mainly caused by mutated exostosin (EXT)-1 or EXT-2 genes. These mutations
yield non-functional EXT-gene products. Lack of functional proteins cause a defect in heparan sulphate synthesis
and therefore in proteoglycan modification and cell signalling. It is assumed that a subset of chondrocytes form an
exostoses, through a growth and differentiation process which is only partially understood. The place of origin of
these exostoses-forming chondrocytes is still unknown. We also do not know in detail which processes influence the
exostoses growth, and what shelters the exostoses from being resorbed by osteoclast activity. In this paper we
systematically review the major pathophysiological theories of exostoses, with a focus on the aforementioned
knowledge gaps.
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Introduction
The World Health Organisation (WHO) defines exostoses as a

cartilage-capped bony outgrowth on the external surface of long
bones. Per definition it contains a bone marrow cavity continuing in
the normal cavity of the long bone [1,2]. With a proportion of 30-50%
of all benign bone tumours, it is the most frequently occurring bone
lesion. Hereditary multiple exostoses (HME) constitutes a separate,
but clinically and radiographically indistinct disease entity that
encompasses 10-15% of all exostoses patients. Approximately 1:50,000
people suffer from HME [3,4]. The disease is also termed hereditary
multiple osteochondroma, diaphyseal aclasis, osteochondromatosis
and multiple cartilaginous exostoses [5].

The diagnosis of HME is based on radiological and clinical
presentation of multiple outgrowths (Figure 1), supplemented with, if
available, histological evaluation. Approximately 65% of all patients
have a positive family anamnesis [6]. HME is an autosomal dominant
inherited disease mainly caused by mutated exostosin (EXT)-1 or
EXT-2 genes. This causes a lack of functional proteins influencing
heparan-sulphate synthesis, thus affecting the proteoglycan
modification and cell signalling which play a role in exostoses growth
[7].

Growth of the exostoses occurs as long as a child is growing, and
new exostoses will form continually. After closure of the growth plates

the exostoses stop growing and no new ones are formed [5]. Both
sessile and pedunculated exostoses have been described. Through its
shape, the pedunculated more than the sessile variant can compromise
overlaying tissue and therefore has a greater risk of becoming
symptomatic [8,9]. The exostoses can lead to compression of tendons,
nerves, muscles, ligaments and of the spinal cord. Patients may
experience pain or fatigue. The growing exostoses are known to cause
a set of growth anomalies, including Madelung-like deformity
(40-60%), unequal limb length (10-50%), joint deformity (2-55%) and
a disproportionally short stature (37-45%) [3,6,10].

Further the exostoses can fracture (5%) and they can give vascular
problems, abnormal scar formation, bursa formation, and joint
impingement [10-13].

The direction of growth of the exostoses is pointed away from the
adjacent growth plate and away from the adjacent joint [14]; they are
not in line with the axis of the bone and are therefore not submitted to
the axial load. We know from normal bone formation that non-loaded
bone will remodel according to the laws of Wolff. This implicates that
we expect the exostoses to be remodeled by creeping substitution and
to eventually disappear as a result of osteoclast resorption [15,16].
Until now it is still unknown why exostoses after formation do not
disappear.

Apart from the unknown mechanism of growth, the place of origin
of the exostoses also remains unclear. Most exostoses are found in the
metaphysis under the periosteum, suggesting a metaphyseal origin.
However, epiphyseal-like cartilage is found on top, suggesting an
epiphyseal origin [15]. There is no medication to cure exostoses or to
slow its growth. Non-recurrence on site is only ensured after radical
surgical removal of the exostoses. However, removal of exostoses in a
skeletally immature patient may lead to epiphyseal damage and growth
deformities [16,17].

The aim of this review is to explore the literature in the light of the
following clinically raised questions: What factors influence the
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growth of exostoses? Do exostoses escape Wolff’s law and if so, in what
way? What is the place of origin of exostoses? In order to answer these
questions as much as possible, the epidemiology, pathophysiology,
marker expression and growth regulation are discussed, and the major
pathophysiological theories are reviewed and put into historical
perspective.

Figure 1: X-ray AP views of the right knee of adolescent female
patient with HME, the lines on the distal femur mark the bony
outgrowth of the exostoses.

Epidemiology of Exostoses
Exostoses are a common isolated bony outgrow of the long bones. It

affects 1-3% of the general population. About 10-15% of these
exostoses are in the context of the genetic form, multiple hereditary
exostoses . HME has its onset from early infancy to puberty. The
exostosis ceases to grow and calcifies when the patient reaches skeletal
maturity. Thereafter, no new exostoses develop [4,5]. The patients in
average suffers from 15-18 exostoses, but up to a number of 80
exostoses have been described. The metaphysis of the tibia, femur and
humerus is the most common location [18-20].

Affliction is usually symmetrical. Caucasians are more often
affected than other races, affecting 0.9 - 2 individuals per 100,000.
Caucasian men in particular have a higher predilection to suffer from
HME [10,21]. Male predilection (1.5: 1) however, is possibly due to an
easier overlooked milder female phenotype [21]. The exostoses have a
cartilage cap, the thickness of the cap differs and ranges from 1-2 mm
to several centimetres. Increasing thickness correlates with pain and

with chondrosarcomatous potential in adults. These exostoses often
have a more proximal location and a larger size [1,2,18,22]. HME
patients have a 1-3% risk of malignancy and the progression to
malignancy is quicker than in non-hereditary (solitary) counterparts
[1-3,6,10,23,24].

Pathophysiology of the Exostose

Histology
Exostoses have a strikingly consistent morphology, typically

forming a cylinder pointing at various angles away from the epiphyseal
disc and the joint. An exostose of a skeletally immature patient
consists of a bony stalk and a cartilage cap. The cap is lineated
peripherally with the perichondrium, which is continuous with the
periosteum of the underlying bone. The cortex of the stalk is in
continuity with the cortex of the normal bone, thus creating a
continuous medullary cavity. In the skeletally immature patient the
medullary cavity is delineated with the cartilaginous cap. The cap has
the histological appearance of an epiphyseal growth plate with
chondrocytes lined up in columns (Figure 2) [18,24].

Figure 2: (A) affranine-O staining of the cartilaginous cap of an
exostosis, showing the presence of similar zones as the mouse
epiphysis but separated in clusters. (B) Haematoxiline staining of
the epiphysis of a 6 week old mouse as a representative example of a
general growth plate.

Genetics
HME is an autosomal dominant inherited condition caused by

mutations in the exostosin (EXT) -1 and EXT-2 genes. The EXT gene
family comprises 6 members, all located on different chromosomes
and chromosomal regions [25-27]. EXT-1 and EXT-2 mutations
together explain over 90% of all cases of HME [28,29]. Mutations in
EXT-1 account for 44-70% of the HME cases and in 27-40% mutations
in EXT-2 are causative for HME. In a subset of patients both genes are
affected [21,30-32]. In males, mutations in EXT-1 lead to a more
severe HME phenotype as compared to mutations in EXT-2. Typically
male carriers of mutations in EXT-1 present themselves with more and
bigger exostoses [33-39].
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The risk of malignant transformation cannot be linked to the
specific genetic mutation. Genetically mutated mice carrying
Ext-1(+/-) as well as Ext-2(+/-) heterozygous mutations mimic the
genetic status of human HME and have shown to be able to format
exostoses. The formation of stereotypic exostoses seems to require a
significant, but not complete, loss of Ext expression [40]. Despite the
identification of causative genes, the pathogenesis of HME remains
unclear.

Cellular biology
EXT-1 and EXT-2 gene products are type II transmembrane

proteins. They contain a single 17 amino acid long transmembrane
domain and a short amino-terminal cytoplasmatic tail. EXT-1 and
EXT-2 form a complex (EXT-1/2) in the Golgi apparatus, acting as
glycotransferases [41-43]. Over-expressed EXT-1 or EXT-2 is
accumulated in the endoplasmic reticulum. Only when expressed in
synchronous amounts, EXT-1/2 complexes are transported to the
Golgi apparatus and display maximum catalytic activity [43-45]. They
seem to play a role in the heparan sulphate (HS) synthesis.

The synthesis of elongated heparan sulphate (HS) chains involves a
polymerisation process that is carried out in different sequential steps.
The process starts with a so-called priming step that prepares the
subsequent polymerization. Thereafter elongation is initiated by
definitive polymerisation of repeating disaccharide units. The EXT
proteins are involved in 2 different steps in this biosynthetic process.
EXT-L2 is the glycosyltransferase, which is critically involved in the
HS specific polymerisation of a N-acetylglucosamine (GlcNAc)
residue to a HS-specific tetrasaccharide linker. This initial
polymerisation of the GlcNAc residue is a prerequisite for further HS
chain elongation catalysed by EXT-1 and EXT-2 [40,43,46-54].

Chain elongation by EXT-1/2 involves the alternating
polymerization of GlcA (glucoronic acid) and GlcNAc dissaccharide
units, maturating the functional HS polymer. When the HS
polymerisation process is completed, the proteoglycans are
transported to the cell surface and located in the extracellular matrix
or at the cell surface, where they function in high affinity binding of
growth factors, cytokines, extra cellular enzymes and even viral
enzymes [43,49,55-57].

As only EXT-1 and EXT-2 are specifically associated with HME, the
major mechanism that is thought to underlie the HME pathogenesis
involves impaired HS-polymerase activity by dysfunctional EXT-1/2
activity, leading to improper HS synthesis and aberrant cell signalling
due to improper binding of essential signalling molecules.

What influences the growth of the exostose?
From clinical follow up it is known that exostoses sprout and grow

while the patient is actively growing. After closure of the growth plates
the exostoses stop growing and no new exostoses are being formed
[5,18]. This raises the question how the growth of the exostoses is
regulated. To answer this question we focus on the influence of
mutated EXT genes on the signalling pathways and the major
regulatory systems of normal growth regulation.

In patients with HME we know that the mutations in either EXT-1
or EXT-2 result in reduction or absence of HS in the exostoses
cartilage compartment. This impaired HS synthesis has been linked to
disturbed cellular signalling responses leading to growth disturbance

of chondrocytes and maybe to the formation of exostoses
[15,40,58,59].

There are two major classes of heparan sulphate proteoglycans
(HSPGs). Glypicans are located at the cell surface and are
glycosylphosphatidylinositol (GPI)-linked molecules, solely bearing
heparan sulphate. The other main class of signalling HSPGs are
syndecans, which are transmembrane proteins decorated with both
chondroitin sulphate and heparan sulphate [60]. HS and HSPG act as
co-receptors for several growth factors, including bone morphogenic
proteins (BMPs), fibroblast growth factors (FGFs), Wingless-members
(Wnt), transforming growth factor β (TGF-β) and Indian hedgehog
(Ihh) [61-69].

Normal endochondral ossification of long bones is a highly
regulated process characterized by proliferation of chondrocytes,
differentiation, calcification, and programmed cell death. The
epiphysis of a long bone is divided into three well defined zones in
which these cellular processes take place: the resting zone with the
immature cells (also known as the germinal zone), the proliferating
zone with more mature chondrocytes, and the hypertrophic zone with
large calcifying and apoptotic chondrocytes. In the growing child the
growth plate matures. During this process the hypertrophic cells
synthesize collagen type X and then undergo calcification and cell
death. After degradation of calcified cartilage by chondroclasts, the
resulting cavities are invaded gradually by osteoblasts secreting bone
matrix. At the end of puberty, the width of the epiphysis decreases and
eventually the epiphysis is completely closed and replaced by bone.
This process is controlled by various endocrine, autocrine, and
paracrine factors [70].

The exact mechanism of epiphyseal fusion is still not completely
understood. Paracrine regulators like parathyroid hormone-related
protein (PTHrP) and Indian hedgehog (Ihh) are considered key
factors in the regulation of the growth plate [71].

These growth factors coordinate endochondral ossification by
regulating chondrocyte proliferation. Looking at one of the major
regulatory systems we zoom in on the possible effects of the HME-
associated EXT-1 and EXT-2 gene mutations on the Indian hedgehog
– parathyroid hormone related protein feedback loop.

HME related to the Indian hedgehog/parathyroid hormone-related
protein signalling

Indian hedgehog (Ihh) seems to orchestrate the chondrocyte
proliferation and differentiation and the osteoblast differentiation
[72]. Ihh is expressed and secreted by post-mitotic hypertrophic
chondrocytes simultaneously with expression of the parathyroid
hormone-related protein receptor (PPR) during the bone formation.
Ihh diffuses throughout the growth plate and binds to its receptor,
Patched-1 (Ptc-1) expressed by chondrocytes in the resting zone. This,
in turn, activates downstream signaling that in turn leads to elevation
of PTHrP expression [73]. Since inactivation of either Ihh or PPR in
chondrocytes leads to abrupt fusion of the epiphyseal growth plate in
mice [74,75], it is suggested that the loop is crucial for maintaining the
growth plate in the open phase. In humans inactivating mutation in
Ihh results in acrocapitofemoral dysplasia, which is associated with
premature closure of the growth plates [76].

EXT-1 and EXT-2 are expressed in the proliferating and the
hypertrophic zones of the growth plate, and are responsible for an
extracellular heparan sulphate proteoglycan (HSPG) gradient. Their
expression coincides with the onset of Indian hedgehog signalling.
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HME associated mutations in EXT-1 and EXT-2 may lead abnormal
HS gradient formation in the growth plate [66,71] . De Andrea et al
showed in different studies of human growth plates and of different
proteoglycan-deficient zebra fish mutants the disrupted diffusion
gradients of morphogens and signal transduction in the epiphyseal
growth plate [77]. As diffusion of Ihh is HSPG-dependent,
proliferation zone EXT-/- chondrocytes could “encounter” an
abnormal Ihh signal, leading to abnormal proliferation [78,79].
Evidence put forth independently by Hameetman and Benoist-
Lasselin, shows the presence of Ihh in the cartilage cap of exostosis and
proves Ihh signalling despite the lack of EXT proteins [80-82].

The above suggests an influence of HS and Ext in HME on the
Indian hedgehog/parathyroid hormone-related protein signalling,
possibly leading to premature closing of the epiphysis and thereby
declaring the short stature in HME patients.

In addition to the hedgehog proteins and parathyroid hormone-
related peptide, other important local regulators of the epiphysis are
the bone morphogenic proteins (BMPs) and the fibroblast growth
factors (FGFs). Further local factors such as vascularisation, vitamin D
and transforming growth factor beta (TGF-β) are not discussed in this
context because they have no known relation with the EXT genes or
HS. Also the systemic factors such as the GH/IGF-I system,
glucocorticoids and oestrogens are not discussed.

HME related to para/autocrine regulators; the bone morphogenic
proteins (BMPs), and the fibroblast growth factors (FGFs).

BMP’s have a role in every stage of endochondral bone formation
and angiogenesis [83,84]. Lack of BMPs and/or their receptors in early
stages have been shown to result in failure in mesenchymal
condensation or digit formation in mice [85-87]. In a later stage the
BMP proteins are expressed in the perichondrium as well as
hypertrophic and proliferative chondrocytes. Indian hedgehog
expression in prehypertrophic chondrocytes increases through BMP
signaling thereby increasing both the rate of chondrocyte proliferation
and the length of proliferative columns [70,88]. Since HS and HSPG
act as co-receptors for BMP’s in HME patient we expect therefore a
decrease in the rate of chondrocyte proliferation and a shorting of the
proliferative columns, which may lead to shortage or axial deviation
(in case of partial decreased growth rate) of the long bones.

Other local growth factors depending on the HSPG’s for cell-
signalling activity are the fibroblast growth factors (FGFs). FGFs are
essential for normal embryonic development.

FGF receptor 3 (FGFR3) is expressed in the resting zone of the
epiphyseal disc, where it promotes hypertrophic differentiation and
decreases proliferation. In mice it has been shown that FGFs can act as
antagonists of BMP signalling and negatively regulate Ihh expression.
FGFs acting via FGF receptor-3 (FGFR3) are the key negative
regulators in chondrocyte proliferation. Mutations in FGFR3 lead to
achondroplasia or hypochondroplasia [71].

The expression of FGFs and their receptors in postnatal growth
plate cartilage suggests that these proteins contribute to growth plate
senescence and thus help to determine the size of the adult skeleton
[70,89].

In relation to HME, EXT mutation and thus HSPG deficiency
would lead to a functional FGFR3 null state. Bovée et al showed
defective (mostly absent) expression of FGF-2, FGFR1, FGFR3 in
exostoses, presumably allowing skeletal overgrowth at the site of the
exostoses [90].

In conclusion, in HME with mutations in either EXT-1 or EXT-2 it
is likely that the absence or reduction of HS disturbs the three major
regulatory systems of epiphyseal growth, being the Indian hedgehog –
parathyroid hormone related protein feedback loop, the BMPs and the
fibroblast growth factors. One of the striking observations is that the
general genetic defect in all cells does not induce exostoses in or near
all growth plates. This raises the question if there might be a
secondary, unknown influence or factor. This suggestion is supported
by multiple studies describing mixed cell populations with both
mutant and wild cells in the cartilage of the exostoses [59,91,92].

Do exostoses escape Wolff’s law and if so, how?
Exostoses contain a bone marrow cavity continuing in the normal

cavity of the long bone. The cap of the exostose has the histological
appearance of an epiphyseal growth plate with chondrocytes lined up
in columns. The growth plate-like lesion grows at an a proximally 60
degree angle relative to the normal growth direction of the bone [13].
When exostoses arise there can be spontaneous regression [93]. This
applies not only to natural occurring exostoses but also for surgically
created ones. Exostoses can be created by inverting a 60 degree span of
the ring of LaCroix [94]. These surgically created exostoses disappear
eventually due to spontaneous regression. One could expect all
exostoses to disappear eventually, raising the question why the
exostoses in HME do not resorb or regress. Possibly, the answer lies
not only in the exostoses itself, but as well in the in the surrounding of
the exostoses. The exostosis is covered with periosteum. This
periosteal layer also covers the cartilaginous top. This layer consists of
undifferentiated cells overlying the top of the exostoses. In culture they
yield a rapidly proliferating homogenous population of fibroblast-like
cells. These cells express FGF9, FGFR3, and collagen type IIa [95].
Possibly influencing the cartilage cell in the top that resemble
epiphyseal cells and may also have a similar function. The top of the
exostoses than behaves like regular endochondral bone with active
remodelling. Trebicz-Geffen assessed surgically created exostoses and
found a lack of FGF receptor 3 (FGFR3), and down-regulated Indian
hedgehog [96]. Perhaps the presence of the epiphyseal-like chondrocyt
carrying cap and the presence of growth regulatory factors such as
FGF and Ihh coming from the covering layer gives active regeneration
of the exostoses which shields them from resorption due to
remodelling. Explaining how the exostoses is constructed by the
cartilaginous cells in the top and simultaneously broken down by the
remodelling.

What is the place of origin of the exostose?
Although we know that most exostoses are found in the metaphysis

under the periosteum we still don’t know where they originate. To find
the place of origin, we first zoom in to the cellular marker expression.
As mentioned, associations have been found between the epiphysis
and exostoses. For example the proliferative zone resembling
chondrocytes in the exostoses stain positive for PCNA [80]. PCNA is a
specific marker for S-phase cells, showing that these proliferative zone
resembling cells indeed preserve their proliferative character. The
cartilage cap of the exostoses does not significantly thicken, which
indicates that the proliferative cells undergo hypertrophy and the
exostoses does retain a rudimentary epiphyseal function. Other
similarities are found when using the proliferative marker Ki-67. Both
the exostoses and the normal growth plate stained positive in equal
measures, showing according to Huch that the exostoses and the
normal growth plate shared similar proliferation capacity [97].
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Benoist-Lasselin proved growth plate phenotype by staining the
exostoses positive for cartilage specific collagen type II, and
hypertrophic zone specific marker collagen type X [80]. The above
makes the epiphyseal disc as a place of origin likely.

Looking at the histopathologic studies of very young patients the
earliest lesions are shown as a micro exostoses within the periosteum
adjacent to the normal physis. This suggests the 'groove of Ranvier' as
a possible place of origin. This idea that the origin of the exostoses is
the groove of Ranvier is supported by the fact that the exostoses always
grows close to the epiphysis but never in it [98-100].

Other histopathologic studies as the study by Milgram in 1983
showed that the exostoses are derived from aberrant cartilaginous
epiphyseal growth plate tissue, which proliferates autonomously and
separates from the normal growth plate near its edge. The aberrant
tissue remains in a subperiosteal location, where it either disappears or
proliferates [15]. This is bolstered by the finding that redistribution of
Ihh from growth plate to perichondrium leads to ectopic cartilage
formation [101]. Further supported by studies conducted in mouse
models of HME that indicated ablation of Ext1 in growth plate
chondrocytes leads to formation of ectopic cartilage around the
epiphyses, not in it [91,92,102].

Looking at the above presented research the growth plate seems to
be best possible place of origin of the exostoses both in cellular type as
in cellular function of the chondrocytes found in the exostoses.

Historical perspective on the theories about the formation of
exostoses in HME

In the earliest publications at the beginning of the 20st century the
exostoses was believed to arise from an erroneous differentiation of
cells in the periosteum [103]. However many years later evidence
showed that the perichondrium and the bony stalk were not of clonal
origin, making it an unlikely pathophysiological source [82]. At the
end of the 20st century, based on the observation that exposure to
radiation could induce solitary exostoses formation the link with DNA
damage was made. The “loss to follow-up” was then postulated as a
mechanism to explain the formation. Researchers thought DNA
damage to be a likely cause of diminished gene expression. Both in
solitary and multiple, or familial, exostoses loss of heterozygosity
(LOH) of the EXT1 gene has been shown [56,104,105]. This suggests a
common pathophysiological mechanism, which seems plausible based
on the extensive similarities in morphology. But laboratory results
showed that while LOH can occur in exostoses, and can induce their
formation, it is not a consistent and thus necessary step in their
development. This led to search for a different explanation as to how
gene expression can be down regulated. It seems obvious that since the
EXT genes function in unison, their expression would also be
regulated in a synchronized fashion. As the EXT genes are only
expressed in specific zones of the normal epiphyseal disc, they might
be that their expression is induced by differentiation. This defective
differentiation is shown by the partial or absent signalling pathways in
the exostoses [13]. With the knowledge of the DNA blueprint in the
21st century mouse, rat and zebra fish models were introduced. Many
different authors than described the different pathways such as the
defective Ihh signal and the Ihh-PTHrP feedback malfunctioning.
Jones et al. in 2003 postulated a theory that an islet of EXT-/-
chondrocytes would produce a defective Ihh signal, refraining the
perichondrium from osteoblastic differentiation. Islet of chondrocytes
differentiate, and form an internal growth plate forming an exostoses
[79]. This theory emphasises the importance of the perichondrium but

does not offer an explanation on how the chondrocytes gain their
proliferative capacity nor does it incorporate the evidence of abnormal
osteoblastic and hypertrophic marker expression in exostoses
chondrocytes.

Other evidence showed that the cartilage cap of an immature
exostoses is of clonal origin and therefore of neoplastic nature
[56,104-106]. This makes the cartilage cap the likelier intermediate for
exostoses development and the growth plate the most likely source of
pathological chondrocytes [81]. Currently different authors believe the
exostoses should be approached more like a derailed growth plate
[4,59,80,97]. The growth plate like structure of the exostoses seems to
be fed by a reservoir of proliferative zone resembling chondrocytes
which are accompanied by hypertrophic zone resembling
chondrocytes, which quite possibly are the differentiation products of
the proliferative resembling cells [107].

Now that the causative gene mutations have been clarified and the
site of origin might be found, it is a matter of finding the
pathophysiological “missing” link that brings us from gene mutation
to exostoses formation. Knowing that the general genetic defect does
not induce exostoses near all growth plates, search for other
explanations began. Different models were therefore introduced such
as Knudson’s two hit model: the neoplastic theory [82,108]. It
postulates that EXT null chondrocytes might lose their tumour
suppressor function through loss of heterozygosity thereby causing the
exostoses [58,99,109-112].

In summary, the well-preserved morphology of exostoses seems to
entail a highly regulated process, deregulated in a highly consistent
manner. The differentiation process is not of pathological nature in
itself but steered in the wrong direction. It can therefore count on a
highly constant and regulated physiological responds, also explaining
the constant morphology. The EXT genes are only expressed
throughout the proliferating and hypertrophic zone of the epiphyseal
disc. Pathological derailment is likely to start as EXT heterozygous
chondrocytes express less heparan sulphate. As heparan sulphate is
essential to membrane bound and extracellular proteoglycans
optimizing signalling transduction and gradient formation of several
premier epiphyseal-signalling pathways, it seems apparent that part of
the solution ought to be found in this aspect.

Possibly a malformation in gradient formation and signalling
exposes chondrocytes to a unique dysphysiological morphogenic
“cocktail”. To understand the exact cocktail these chondrocytes are
subjected, more work is needed.

Conclusion
This review summarizes current knowledge about HME. The

pathophysiology and genetics of the EXT genes and their possible role
in heparan sulphate biosynthesis are described. The theories about the
growth of the exostoses are analysed, finding clues in the mutations in
either EXT-1 or EXT-2 that lead to the absence or reduction of HS.
This seems to disturb the major regulatory systems of epiphyseal
growth and of the exostoses. The question on how the exostoses escape
Wolff’s law is highlighted referring to the periostal layer and the
exostoses proper growth plate. The presence of this epiphyseal like
chondrocyt caring cap might give the exostoses the possibility to
regenerate and that might shield it from being resorpted due to
remodelling. This active chondrocytic cap on the exostoses might be
due to the place of origin of the cells that could very well be the growth
plate. Thus also explaining their growth capacity in harmony with the
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growth of the patient. Because the general gene defect doesn’t account
for difference in penetration of the disease in patients, further studies
might be focussed on the search for multiple causes or defects.
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