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Abstract
     Beyond skeletal muscle’s primary function as a force generator for locomotion, there is a growing recognition 

of the important role skeletal muscle plays in overall health through its impact on whole-body metabolism as well as 
directly influencing quality of life issues with chronic disease and aging. Over the last decade, extensive progress has 
been made with regard to our understanding of the molecules that regulate skeletal muscle mass. Various growth 
factors such as insulin-like growth factor-I (IGF-I), hepatocyte growth factor (HGF), and leukemia inhibitory factor (LIF) 
have been shown to stimulate the activation, proliferation, and differentiation of satellite cells, and then contribute to 
muscle hypertrophy as well as normal muscle growth. In contrast, myostatin inhibits these processes through forkhead 
box O (FOXO) and/or Smad 2/3-dependent signaling. Intramuscular signaling by PI3-K/Akt/mTOR, calcineurin, and 
serum response factor (SRF) activates protein synthesis but some signaling also inhibits protein degradation at the 
same time. Although various studies using in vitro cell cultures and in vivo rodent models have revealed candidates 
for proteins that modulate the hypertrophic process in muscle fibers after mechanical loading, these findings do not 
necessarily apply to the adaptations that occur in human muscle. In this review, we discuss several possible factors 
regulating muscle hypertrophy, and the adaptations of human muscle after resistance training, a model of mechanical 
loading.     
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Introduction 
In humans, skeletal muscle is the most abundant tissue in the body 

comprising 40-50% of body mass and playing vital roles in locomotion, 
heat production during periods of cold stress, and overall metabolism. 
Skeletal muscle is composed of bundles of muscle fibers called fascicles. 
The cell membrane surrounding the muscle cell is the sarcolemma, 
and beneath the sarcolemma lies the sarcoplasm, which contains the 
cellular proteins, organelles, and myofibrils: the titin actin filament 
and the thicker myosin filament. The arrangement of these protein 
filaments gives skeletal muscle is striated appearance. 

Skeletal muscle is capable of remarkable adaptations in response 
to altered activity. These adjustments to mechanical and metabolic 
demands elicit marked modifications of gene expression that could 
lead to gain (hypertrophy) or loss (atrophy) of muscle mass. Whereas 
endurance training leads to minor changes in skeletal muscle mass, 
strength training induces marked hypertrophy of exercising muscles. 
Histochemical analyses clearly show a 10 to 30% increase in muscle 
fiber cross-sectional area after 10-12 weeks of resistance training in 
sedentary subjects [1].    

Satellite cells are resident myogenic stem cells found in postnatal 
skeletal muscle, accounting for 3-9% of the sublaminal nuclei associated 
with adult normal muscle fiber [2], with the variation widely depending 
on animal species, age, muscle fiber type, and longitudinal location of 
the cell along the fiber [3,4]. Satellite cells, existing between the basal 
lamina and the sarcolemma of the fiber [5], are normally found in a 
mitotically and metabolically quiescent or dormant state most of the 
time in adult muscles [6,7]. When muscle is injured or mechanically 
stretched, satellite cells activate to enter the cell cycle from a protracted 
G1 state (often referred to as G0). Activated satellite cells have been 
shown to migrate to the damaged site where they replicate DNA, 
divide, differentiate, and fuse with the adjacent muscle fiber or form 
new fibers [4,8]. 

It has been reported that satellite cells are activated in compensatory 
hypertrophy [8,9], and addition of new nuclei to the growing fiber seems 
to be required for extreme hypertrophy. Since the myonuclear domain 
is constant in hypertrophied muscle after mechanical overloading 
[10,11], many satellite cells must be incorporated adjacent to muscle 
fibers. In fact, irradiation of satellite cells followed by a loading stimulus 
results in an attenuated increase in skeletal muscle mass and protein 
content [12]. Therefore, it is necessary for consecutive processes (the 
activation, proliferation, and differentiation of satellite cells) to elicit 
muscle hypertrophy in the case of mechanical overloading as well 
as normal growth. However, several researchers recently suggested 
satellite cell-independent muscle hypertrophy during mechanical 
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overloading. In addition, some have debated whether the contribution 
of satellite cells to fiber hypertrophy in adult muscle is minor [13,14].

In hypertrophied muscle, increasing protein synthesis and 
decreasing protein degradation are also important events. PI3-K 
(phosphatidylinositol 3-kinase)/Akt/mTOR (mammalian target of 
rapamycin) signaling has been shown to be crucial to protein synthesis 
[15,16]. Mechanical stretching in vivo and in vitro activates SRF-
dependent signaling in skeletal muscle similar to smooth and cardiac 
muscles [17,18]. Although many factors have been shown to influence 
the hypertrophic process in skeletal muscle, most studies have been 
conducted using an in vitro culture system [19,20] or rodent muscle 
[17,21,22]. In addition, the adaptations after resistance training would 
be clearly different to those for mechanical overloading, a common 
model of rodent muscle hypertrophy. In this review, we summarize 
possible candidates for proteins that regulate muscle hypertrophy. In 
addition, we describe recent findings regarding these candidates in 
human skeletal muscle after resistance training.    

Modulators of muscle hypertrophy

Insulin-like growth factor-I: The anabolic effects of insulin-like 
growth factor-I (IGF-I) have been demonstrated in both muscle cell 
lines and in vitro animal models [23-26]. For example, the addition 
of IGF-I to cultured myotubes results in an enlargement of myotube 
diameters and a higher protein content [25,26], while the delivery of 
IGF-I either through osmotic pumps or genetic overexpression results 
in increased muscular mass in rodents [23,27]. Mechanical loading 
also results in skeletal muscle synthesis of IGF-I [28-30] in vivo, which 
has led investigators to conclude that IGF-I is a critical factor involved 
in skeletal muscle hypertrophy. Resistance training also results in 
increased IGF-I mRNA expression in human skeletal muscle [31,32]. 
Pre-training levels of IGF-I expression have been shown to correlate 
most consistently with the post-training gains of muscle size and 
strength [33].

IGF-I is thought to induce muscle growth through the increased 
proliferation of satellite cells and the enhancement of protein 
translation resulting in an increase in the rate of protein synthesis [34]. 
In addition to stimulating the proliferation of myoblast proliferation, 
IGF-I stimulates their differentiation [35]. IGF-I also alters the 
transcription and translation of muscle factors that regulate myocyte 
growth or differentiation [36]. For example, IGF-I inhibits production 
of myogenin, a protein that stimulates muscle cell differentiation, 
thus allowing increased myoblast proliferation. However, its effects 
are biphasic because prolonged exposure to IGF-I results in increased 
myogenin expression, thus facilitating differentiation [37]. IGF-I also 
modulates the expression of MyoD, myocyte enhancer factor-2 (MEF2) 
and p21 to control differentiation.

Many investigators hypothesize that IGF-I expression induced by 
mechanical overloading is crucial to the hypertrophic process [38-40]. 
However, several studies indicated earlier activation of mTORC1 than 
enhancement of PI3-K/Akt [41] or Akt/mTOR activation not through 
IGF-I receptor-dependent signaling [42]. Although the possibility of 
IGF-I-dependent muscle hypertrophy after mechanical overloading 
can not be excluded, further study is needed to elucidate the true role 
of IGF-I in muscle hypertrophy in vivo. 

Hepatocyte growth factor and neuronal nitric oxide synthase: 
Two factors have been demonstrated to activate quiescent satellite cells. 
The first is hepatocyte growth factor (HGF). Early experiments using 
single muscle fibers with associated quiescent satellite cells have shown 
that growth factors, such as IGF-I and fibroblast growth factor (FGFs), 

do not activate satellite cells in fibers [43,44]. Although IGF-I and FGFs 
are reported to activate satellite cells, the studies involved typically 
used cultures of muscle cells that were not quiescent; IGF-I and FGFs 
increase the proliferative activity of satellite cells once they are activated, 
even when that activation results during the cell isolation process, i.e. 
prior to the plating of cells or fibers for culture. Moreover, platelet-
derived growth factor BB, transforming growth factor-β (TGF-β), and 
epidermal growth factor do not stimulate quiescent cells to enter the cell 
cycle in vitro [45,46]. Therefore, HGF is the only growth factor that has 
been established to have the ability to stimulate quiescent satellite cells 
to enter the cell cycle early in a culture assay and in vivo [47,48]. HGF 
is localized to the extracellular domain of un-injured skeletal muscle 
fibers through a possible association with glycosaminoglycan chains of 
proteoglycans that are essential components of the extracellular matrix, 
and following injury, quickly associates with satellite cells [49].

The second component shown to be involved in satellite cell 
activation is nitric oxide (NO), a short-lived free radical that is well 
known as a freely diffusible and ubiquitous molecule produced by nitric 
oxide synthase (NOSs) from the L-arginine of substrates. In skeletal 
muscle, neuronal NOS (nNOS, also called NOS-1) is localized to the 
sarcolemma of muscle fibers by association at its amino terminus with 
alpha1-syntrophin linked to the dystrophin cytoskeleton [50]. The NO 
radical is normally produced in very low level pulses by muscles under 
conditions where satellite cells are quiescent [51], and the expression 
and activity of constitutive NOS (nNOS and eNOS) are up-regulated 
by exercise, loading injury, shear force, and mechanical stretch. 
Therefore, the NO radical is an exciting subject in the ‘mechanobiology’ 
of skeletal muscles that can respond to mechanical stimuli and initiate 
the molecular programs that ensure tissue growth, adaptation, and 
regeneration. 

Studies in vitro and in vivo using rodent muscle have shown HGF 
and NO to regulate the activity of many satellite cells [48,49,52,53]. 
Although several studies have demonstrated an important role for HGF 
in satellite cells during muscle hypertrophy in vivo, only a few [54,55] 
have found HGF mRNA expression in the plantaris muscle to be up-
regulated after functional overload. Just one study has indicated a role 
for HGF in human hypertrophied muscle. Shelmadine et al. [56] found 
an increase in the amount of phosphorylated c-Met, the receptor for 
HGF, after 28 days of resistance training [a program consisting of nine 
exercises such as bench press, shoulder shrugs, chest flies, biceps curls, 
i.e., 3 × 10RM (repetition maximum), 4 times/week]. Strangely, whether 
resistance training modulates the expression pattern of HGF in human 
muscle and/or satellite cells have not been investigated. In contrast, 
the amount of nNOS mRNA and protein has been demonstrated to 
be increased in rodent muscles after swim training (60 min twice/day 
for 3-4 week) [57] and acute eccentric exercise (downhill running) [58] 
and in human muscle after short-term (10 days) endurance training 
[59]. Similarly, it is unknown whether resistance training increases 
nNOS expression in human skeletal muscle. Therefore, the functional 
role of HGF and nNOS during muscle hypertrophy in humans needs to 
be clarified by further studies. It may be that the extent of mechanical 
stimulation by resistance training affects the expression of HGF and 
nNOS in human muscle.

Leukemia inhibitory factor: Leukemia inhibitory factor (LIF) is 
a newly discovered myokine [60], originally identified by its ability to 
induce the terminal differentiation of myeloid leukemic cells. Today, 
LIF is known to have a wide array of functions, including acting as 
a stimulus for platelet formation, the proliferation of hematopoietic 
cells, bone formation, neural survival and formation, muscle satellite 
cell proliferation and acute phase production by hepatocytes [61]. 
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LIF is a long chain four α-helix bundle cytokine, which is highly 
glycosylated and may be present with a weight of 38-67 kDa, which can 
be deglycosylated to ~20 kDa [62,63]. Several tissues, including skeletal 
muscle, express LIF. LIF is constitutively expressed at a low level in 
type I muscle fibers [64,65] and is implicated in conditions affecting 
skeletal muscle growth and regeneration [64-66]. Production of the LIF 
protein is augmented in mechanically overloaded rat plantaris muscle 
and in denervated rat muscles [65], thus endogenous LIF production 
is modulated by factors influencing muscle activity. Furthermore, LIF 
restored the hypertrophic response to increased loading in LIF (-/-) 
mice, and has been denoted as an important factor in skeletal muscle 
hypertrophy [67].    

In 1991, Austin and co-workers demonstrated that LIF stimulated 
myoblast proliferation in culture [68], thereby showing that LIF 
functions as a mitogenic growth factor when added to muscle precursor 
cells in vitro. To date, different groups have confirmed this finding and 
shown that LIF induces satellite cell and myoblast proliferation, while 
preventing premature differentiation, by activating a signaling cascade 
involving Janus kinase 1 (JAK1), signal transducers and activators 
of transcription (STAT) 1 and STAT3 [69,70]. In line with this, the 
specific LIF receptor is primarily expressed by satellite cells and not by 
mature muscle fibers [64]. Thus, it seems that LIF has the potential to 
affect satellite cells rather than mature muscle fibers.

Broholm and Pedersen [71] proposed the intriguing hypothesis 
that the primary function of LIF, as a contraction-induced myokine, 
is that of a mitogenic growth factor affecting nearby satellite cells in 
a paracrine fashion. Indeed, in primary human skeletal myocytes, 
Broholm et al. [60] observed a marked increase in both LIF mRNA 
and protein in response to a Ca2+ ionophore, ionomycin. Although 
Broholm et al. [60] also demonstrated that neuromuscular activity 
caused by endurance exercise (3 hours on a cycle ergometer at ~ 60% of 
VO2max) elicited LIF mRNA expression in vastus lateralis muscle 0-3 
hours postexercise, they did not observe a similar significant increase 
at the protein level. In contrast, our previous study [65] found that 
chronic mechanical overloading of rat plantaris muscle induced by 
ablation of synergists was followed by an increase in LIF protein from 
2 to 14 days of overload. Broholm et al. [60] proposed that repetitive 
bouts of exercise are necessary to induce accumulation of the LIF 
protein in skeletal muscle. This may be supported by our finding that 
no LIF protein was detected in hypertrophied muscle on the first day 
[65]. It is unknown whether increased neuromuscular activity after 
resistance training up-regulates LIF mRNA and protein expression 
in human skeletal muscle. The functional role of LIF during muscle 
hypertrophy needs to be clarified further. 

Myostatin and follistatin: Myostatin was first discovered during 
screening for novel members of the TGF-β superfamily, and shown to 
be a potent negative regulator of muscle growth [72]. Like other TGF-β 
family members, myostatin is synthesized as a precursor protein that 
is cleaved by furin proteases to generate the active C-terminal dimer. 
When produced in Chinese hamster ovary cells, the C-terminal dimer 
remains bound to the N-terminal propeptide, which remains in a 
latent, inactive state [73,74]. Most, if not all, of the myostatin protein 
that circulates in blood also appears to exist in an inactive complex with 
a variety of proteins, including the propeptide [75]. The latent form of 
myostatin seems to be activated in vitro by dissociation of the complex 
with either acid or heat treatment [74,75] or by proteolytic cleavage of 
the propeptide with members of the bone morphogenetic protein-1/
tolloid family of metalloproteases [73].

Studies indicate that myostatin inhibits cell cycle progression and 
reduces levels of myogenic regulatory factors, thereby controlling 

myoblastic proliferation and differentiation during developmental 
myogenesis [76-78]. Mutations in myostatin can lead to massive 
hypertrophy and/or hyperplasia in developing animals [76]. Therefore, 
many researchers have focused on inhibiting myostatin for treating 
various muscle wasting disorders such as muscular dystrophy, 
sarcopenia, and cachexia [79,80]. Myostatin binds to and signals 
through a combination of Activin IIA/B receptors on the cell 
membrane, but has higher affinity for ActRIIB. On binding to ActRIIB, 
myostatin forms a complex with a second surface type I receptor, either 
activin receptor-like kinase (ALK4 or ActRIB) or ALK5 to stimulate 
the phosphorylation of receptor Smad and the Smad2/3 transcription 
factors in the cytoplasm. Then Smad2/3 are translocated and modulate 
the nuclear transcription of genes such as the MyoD gene [81]. In 
contrast, forkhead box O (FOXO) 1 and Smad2 appear to control the 
differentiation of C2C12 myoblasts by regulating myostatin mRNA 
and its promoters [81]. More recently, the IGF-I-Akt-mTOR pathway, 
which mediates both differentiation in myoblasts and hypertrophy in 
myotubes, has been shown to inhibit myostatin-dependent signaling. 
Blockade of the Akt-mTOR pathway, using siRNA to RAPTOR, 
a component of TORC1 (TOR signaling complex 1), facilitates 
myostatin’s inhibition of muscle differentiation because of an increase 
in Smad2 phosphorylation [82]. In contrast, Smad2/3 inhibition 
promotes muscle hypertrophy partially dependent on mTOR signaling 
[83]. 

Considerable progress has been made in terms of understanding 
how myostatin activity is regulated extracellularly by binding proteins 
[84]. One of these regulatory proteins is follistatin, which can act as 
a potent myostatin antagonist. Follistatin has been shown capable of 
blocking endogenous myostatin activity in vivo, as transgenic mice 
overexpressing follistatin specifically in skeletal muscle exhibited 
dramatic increases in muscle growth comparable to those seen in 
myostatin-knockout mice [73,85]. More recently, Hansen et al. 
[86] conducted acute exercise using a bicycle or one-legged knee 
extensor exercise for healthy subjects, and acute swimming (1 hour) 
for mice. They found that the plasma follistatin level increased after 
acute exercise in all cases. Interestingly, their Western blotting and 
real-time PCR analysis results showed marked increases in follistatin 
mRNA and protein in the liver but not skeletal muscle of the mice. 
Since the up-regulation in liver was lost by the modulation of plasma 
epinephrine, Hansen et al. [86] proposed muscle-liver cross talk during 
exercise. Jensky et al. [87] also reported that the amount of follistatin 
as well as myostatin mRNA did not change after single-leg maximal 
eccentric or concentric isokinetic knee extension exercise for young 
women. Many previous studies demonstrated a marked reduction of 
myostatin expression with resistance training [88-92], although some 
studies have failed to obtain a positive effect [93,94]. More recently, 
Dennis et al. [33] showed that higher myostatin transcript levels at 
baseline were predictive of positive training outcomes, which supports 
the “novel paradox” proposed by Kim et al. [90], whereby individuals 
with higher baseline levels of the “antigrowth factor” myostatin have 
greater potential for muscle growth. Myostatin downregulation after 
acute exercise was strongly associated with muscle mass gains after 
training [95], and the magnitude of myostatin suppression by training 
was strongly related to strength gains [33]. 

Intracellular modulators

PI3-K-Akt-mTOR: A central pathway involved in hypertrophy is 
regulated at the translational level by serine/threonine kinase Akt (or 
PKB). In muscle, Akt is activated by the upstream PI3-K, induced either 
by receptor binding or by integrin-mediated activation of focal adhesion 
kinase, such as in cardiac myocytes [96,97]. PI3-K activates Akt, which 
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then has the ability to phosphorylate and change the activity of many 
signaling molecules. Among these are the mTOR and glycogen synthase 
3-β (GSK-3β), which play a crucial role in the regulation of translation 
[98]. Akt activates mTOR via phosphorylation and inactivation of 
tuberous sclerosis complex-2 (TSC-2) [99]. Subsequently, mTOR 
phosphorylates and activates the 70 kDa ribosomal protein S6 kinase 
(p70S6K), which results in increased translation either directly or 
indirectly by activating initiation and elongation factors, eIF-2, eIF-4E 
(through 4E-BP) and eEF-2 [21]. In addition, Akt also phosphorylates 
and inactivates GSK-3β, thereby activating translation via initiation 
factor eIF-2B [100]. Other functions of Akt include the negative 
regulation of protein degradation via inhibition of FOXO-mediated 
proteasomal activity [101]. However, Akt has also been associated with 
up-regulation of the proteasome through activation of nuclear factor-
κB (NF-κB) in a PI3-K-dependent process [102].

Several researchers have investigated the adaptive changes in 
Akt-mTOR-p70S6K signaling after resistance training [103-106]. For 
example, Mascher et al. [105] had male subjects (23 ± 1 year) conduct 
resistance exercise composed of four sets of 10 repetitions at a workload 
corresponding to ~ 80% of 1RM, and conducted muscle biopsies before 
and 15 min, 1 h, and 2 h after the exercise. They found several fold 
increases in the phosphorylation of mTOR at Ser2448, p70S6K at Ser424/
Thr421 and Thr389, and ribosomal protein S6, which persisted for up to 
2 h of recovery. Eight weeks of resistance training (leg presses, squats, 
and leg extensions) has been shown to increase the phosphorylation 
(activation) of Akt-1 at Ser473, and mTOR at Ser2448, but not p70S6K at 
Thr389 [104]. Although it was not determined whether such activation is 
attributable to IGF-I induced by resistance exercise or solely mechanical 
signaling not via IGF-I, Akt-mTOR-p70S6K signaling appears to play a 
central role in exercise-induced muscle hypertrophy. 

Calcineurin: During hypertrophy, the binding of IGF-I to its 
receptor initiates a cascade of signaling events, which result in muscle 
growth. The major pathway believed to be involved in the onset of 
hypertrophy is PI3-K/Akt/mTOR/p70S6K, as eloquently reviewed 
by Glass [15,16]. Recently however, a Ca2+-dependent pathway and 
its downstream mediators have also been implicated in the adaptive 
responses seen during hypertrophy. It has been demonstrated that 
inhibition of calcineurin by cyclosporine A (CsA) results in inhibition 
of the rapid growth of all fiber types in the overloaded muscle of the 
mouse [107] through the downstream targets myogenin, utrophin A, 
the Id family, and myostatin [108-112]. 

The potent effect of calcineurin upon hypertrophy has further been 
demonstrated in cell culture. In cell lines, which received CsA, satellite 
cell differentiation was inhibited. Conversely, in cells administered 
a constitutively active calcineurin, the differentiation process was 
enhanced [113]. These results would suggest that calcineurin-dependent 
signaling is capable of directly targeting satellite cells. However, while 
satellite cell activity is undoubtedly of importance in overload-related 
muscle adaptations, it does not appear to be dependent solely upon 
calcineurin activity [114].

Calcineurin-dependent signaling has been shown to a major 
modulator for the hypertrophy in slow-type soleus muscle [115-117]. 
During muscular hypertrophy in vivo, potential downstream targets 
for the effects of calcineurin are myostatin and MEF2C. Studies in 
mice have found decreased myostatin mRNA levels in animals with 
compromised calcineurin signaling compared to wild-type controls 
[118]. The hypertrophy-defective soleus muscle treated with CsA 
possessed a lower level of the MEF2C but not MEF2D protein in the 
subsarcolemmal region in a group of myotubes and/or myofibers 

during an active-differentiation period (4 days postsurgery) [119]. Two 
recent findings [120,121] clearly showed that MEF2C is required for 
thick filaments to form in nascent muscle fibers and for the integrity 
of the sarcomere and M-line during postnatal muscle growth, by 
directly regulating several muscle structural genes such as the genes for 
myomesin, myosin heavy chain (MHC) and myosin light chain. 

Endurance training has been shown to increase the expression 
of calcineurin and calcineurin-downstream candidates [122-124], 
whereas it has not been studied until recent years whether resistance 
training modulates calcineurin expression levels in mammalian skeletal 
muscles. Using twenty-nine physically active male subjects, Lamas 
et al. [125] tested whether the hypertrophy of skeletal muscle caused 
by strength and power training included an increase in calcineurin 
expression. In their study, the strength group trained with an intensity 
of between 10 and 4 RM, while the power training group trained with 
an intensity of between 30% and 60% of 1RM. Eight-week progressive 
training regimens elicited a significant increase in strength and muscle 
fiber hypertrophy, but there was no change in calcineurin mRNA levels 
in the vastus lateralis muscle after the training. This data may support 
our hypothesis of a limited role for calcineurin in the hypertrophy of 
slow-type soleus muscle.

Serum response factor-dependent signaling: Serum response 
facotr (SRF) is a ubiquitously expressed member of the MADS 
(MCM1, Agamous, Deficiens, SRF) box transcription factor family, 
sharing a highly conserved DNA-binding/dimerization domain, 
which binds the core sequence of SRF/CArG boxes [CC (A/T)6 GG] as 
homodimers [126]. Functional CArG boxes have been found in the cis-
regulatory regions of various muscle-specific genes, such as the skeletal 
α-actin [127], muscle creatine kinase, dystrophin, tropomyosin, and 
myosin light chain 1/3 [128] genes. SRF-dependent signaling plays 
a major role in a variety of physiological processes, including cell 
growth, migration, and cytoskeletal organization [129]. Recent results 
obtained with specific SRF knockout models by the Cre-LoxP system, 
emphasize a crucial role for SRF in postnatal skeletal muscle growth 
and regeneration by modulating interleukin-4 and IGF-I mRNA 
expression [130]. SRF also enhances the hypertrophic process in 
muscle fibers after mechanical overloading [17,22]. For example, we 
showed that in mechanically overloaded plantaris muscle of rats, the 
SRF protein co-localized with MyoD and myogenin in myoblast-like 
cells during the active differentiation phase [22]. 

It is proposed that the transcriptional activity of SRF is regulated 
by muscle ring finger (MuRF)-2 [131] and striated muscle activators 
of Rho signalng (STARS) [132,133]. At the M-band, the mechanically 
modulated kinase domain of titin interacts with a complex of the 
protein products of the atrogenes NBR1, p62/SQSTM-1 and the 
MuRFs [131,134]. This complex dissociates under mechanical arrest, 
and MuRF-1 and MuRF-2 translocate to the cytoplasm and the nucleus 
[131,135]. One of the probable nuclear targets of MuRFs is SRF [131], 
suggesting that the MuRF-induced nuclear export and transcriptional 
repression of SRF may contribute to amplifying the transcriptional 
atrophy program [136].

Thus, it is possible that the synergistic transactivation of SRF 
and SRF-linked molecules is abrogated by MuRF-2 in vivo. On the 
other hand, SRF activity is exquisitely sensitive to the state of actin 
polymerization. G-actin monomers inhibit SRF activity, whereas 
polymerization of actin in response to serum stimulation and RhoA 
signaling. In this pathway, signal inputs lower the ratio of globular 
actin to fibrillar actin thereby liberating the binding of myocardin-
related transcription factor-A (MRTF-A) to globular actin resulting 
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in the nuclear accumulation of MRTF-A and subsequent SRF-
dependent gene expression [137]. It has been well established that the 
overexpression of STARS contribute to the nuclear translocation of 
MRTF-A and MRTF-B [133,138], and then these factors activate SRF 
transcription. 

Lamon et al. [139] demonstrated that 8 weeks of resistance training 
(leg presses, squats, leg extensions) induced increases in SRF mRNA 
(3-fold) and nuclear protein (1.25-fold) in the vastus lateralis muscle. 
In the same training period, they also observed a similar increase in 
the mRNA levels of several SRF-target molecules (α-actin [127], MHC 
IIa [140], and IGF-I [130]). They proposed the induction of these 
molecules by SRF in human hypertrophied muscle, though they did 
not provide any direct evidence such as transcriptional activation by 
increased binding of SRF to these SRF-targeted promoter regions. 
Figure 1 provides an overview of various regulators for both protein 
synthesis and the participation of satellite cells in hypertrophied muscle 
after mechanical loading. 

PGC-1α: Peroxisome proliferator-activated receptor (PPAR)-γ 

coactivator-1α (PGC-1α) was originally identified as a transcriptional 
co-activator of PPAR-γ induced by cold exposure in brown adipose 
tissue [141]. It has since been shown to co-activate several nuclear 
hormone receptors and transcription factors (e.g. estrogen-related 
receptorα, PGC-1α, nuclear respiratory factor-1, and MEF-2) which 
leads to an up-regulation of mitochondrial gene expression and an 
increase in mitochondrial DNA in tissues such as skeletal muscle [142]. 
The expression of PGC-1α in skeletal muscle is greatly influenced by 
levels of physical activity with endurance exercise increasing PGC-1α 
expression [143] and physical inactivity leading to decreased expression 
[144].

PGC-1α has been implicated in the regulation of skeletal muscle 
mass, particularly under conditions of muscle atrophy [145]. For 
example, PGC-1α expression decreases in a multitude of different 
muscle atrophic models [145-149], although some models have 
shown increases in PGC-1α expression [150,151]. Recently, it was 
proposed that a decrease in PGC-1α mRNA, prior to the induction 
of denervation-induced muscle atrophy, may contribute to ensuing 

Figure 1: Myostatin signals through the ActRIIB-ALK4/5 heterodimer activate Smad2/3 with blocking of MyoD transactivation in an autoregulatory feedback loop. In 
addition, Smad3 sequesters MyoD in the cytoplasm to prevent it from entering the nucleus and activating the stem cell population. Recent findings [82,83] suggest that 
myostatin-Smad pathway inhibit protein synthesis probably due to blocking the functional role of Akt. Mechanical loading (neuromuscular activity) upregulates the amount 
of follistatin, a myostatin blocker, and of IGF-I and then stimulates protein synthesis by activating Akt/mTOR/p70S6K pathway. Akt blocks the nuclear translocation 
of FOXO to inhibit the expression of Atrogin-1 and MuRF and the consequent protein degradation. Myosin-actin interaction by mechanical loading activate STARS /
MRTF-A/SRF signaling [133]. In contrast, accumulation of MuRF in muscle tissue under inactivity (hindlimb suspension, immobilization, etc) inhibits SRF-dependent 
transcription of muscle-specicfic genes [131]. HGF and nNOS co-ordinately regulate switching of satellite cells from quiescence to activation. IGF-I and LIF enhance 
proliferaion of satellite cells. After stimulating by both Ca2+ and IGF-I, calcineurin promote the differentiation of these cells through MyoD, myogenin, and MEF2 [110]. 
These calcineurin’s function during differentiation is abrogated by myostatin-dependent signaling. In hypertrophic muscle after mechanical overloading, the differentiating 
myotubes seems to be incorporated to the existing muscle fibers ultimately. ActRIIB; activin receptor IIB, ALK4/5; activin-like kinase 4/5, eIF4E; eukaryotic initiation factor 
4E, FOXO; Forkhead box O, HGF; hepatocyte growth factor, IGF-I; insulin-like growth factor-I, LIF; leukemia inhibitory factor, MRTF-A; mycardin-related transcription 
factor-A, mTOR; mammalian target of rapamycin, MuRF; muscle ring-finger protein, NOS; nitric oxide synthase, PI3-K; phosphatidylinositol 3-kinase, Rheb; Ras homolog 
enriched in brain, SRF; serum response factor, STARS; striated muscle activators of Rho signalng, TORC1; a component of TOR signaling complex 1
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muscle atrophy [145]. To date, however, no studies have demonstrated 
that a decrease in muscle- specific knockout of PGC-1α does not 
exacerbate denervation-induced atrophy, nor increase the expression 
of atrogin-1 and MuRF-1 [152]. Thus, notwithstanding potential 
compensatory adaptations in these transgenic models, to date, there is 
little support for the hypothesis that the loss of PGC-1α expression per 
se is sufficient to induce muscle atrophy.

Significant evidence exists that increased expression of PGC-1α is 
sufficient to inhibit increases in protein degradation and protect skeletal 
muscle mass from various atrophic stimuli. For example, transient 
overexpression of PGC-1α in vivo blocks c.a.-FOXO3-induced muscle 
fiber atrophy, and transgenic muscle-specific PGC-1α overexpression 
protects against denervation- and fasting-induced atrophy, an effect 
associated with a blunting of the expression of atrogin-1, MuRF1 and 
cathepsin L [145]. Moreover, PGC-1α overexpression also protects 
aging muscle from sarcopenia and is associated with reduced apoptotic 
markers and suppression of autophagy and ubiquitin-proteasome 
system genes [153]. The anti-atrophic effects of PGC-1α may be due, at 
least in part, to the suppression of FOXO3’s binding to, and activation of, 
genes such as the atrogin-1 gene [145,146,154]. NF-kB, a transcription 
factor also implicated in skeletal muscle atrophy [155,156], has recently 
been shown to be profoundly inhibited by PGC-1α overexpression in 
vivo [145], which could explain some of the PGC-1α’s effect. 

Summary
Studies of muscle biology using cell culture and rodent muscles 

over the past decade have advanced our understanding of the functionl 
role of mechanical loading in skeletal muscle hypertrophy. However, 
these findings do not always correspond to human muscle adaptations 
after resistance training. PI3-K-Akt-mTOR signaling seems to be 
crucial to muscle hypertrophy after both mechanical loading in 
rodents and resistance training in humans irrespective of IGF-I-
dependent pathways. Although in rodents, HGF and LIF are well-
known mediators for switching, activating or increasing the number of 
satellite cells during muscle hypertrophy, it needs to be demonstrated 
whether these factors function similarly in human muscle after 
resistance training. The induction of PGC-1α expression by gene 
manipulation has been shown to prevent age-related muscle wasting 
in mice. Currently, resistance training with or without amino acids is 
used not only to promote muscle hypertrophy in young athletes but 
also to prevent age-related muscle wasting and weakness. It remains to 
be elucidated whether resistance training-induced PGC-1α expression 
increases muscle mass in the young or elderly. 
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