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Introduction
Recent advances in Next-Generation Sequencing (NGS) platforms 

[1] have made it possible to produce sequence data in vastly larger
volumes and at a fraction of earlier costs. These NGS technologies have 
resulted in exponential growth of sequence data, outpacing the long-
term trend of computers to double in speed every 18 months (Moore’s
law). This has led to the cost of compute infrastructure necessary to
perform analytical processing being a limiting factor in several areas of
genomics research. Sequence data by itself provides little information,
and analysis is critical for creating knowledge. The most important
analytical process is comparison of data to sequences with known
molecular properties. This task is computationally complex, but
algorithms capable of performing this type of database comparison
such as the Basic Local Alignment Search Tool (BLAST; [2,3]) have
been available for some time. Many variants of BLAST are also in use,
with National Center for Biotechnology Information (NCBI) BLAST
and WU-Blast [4] being the most popular. These programs have been
optimized for over a decade and have become the de-facto standard for 
benchmarking comparisons in the bioinformatics industry.

The BLAST package of algorithms contains 4 major categories: 
nucleotide, protein, translated and special. Each of these has sub-
components. For example, the protein searches can be conducted with 
BLASTP, Psi-, Phi- or RPS-BLAST [5,6]. While the original BLAST 
program was well optimized for searching the individual sequence 
reads (strings) produced by 1990s technology, a single run on a current-
generation sequencer now generates over 109 short read DNA sequence 

strings. Additionally, these must now be independently analyzed against 
a much larger data set of known sequences, which can be hundreds 
of gigabytes (or tens of billions of sequences) in size. A BLASTX or 
TBLASTX search of multiple sequence runs against GenBank databases 
thus requires substantial supercomputing resources. Considering that 
sequencing technology to emerge in the next one to two years will likely 
increase data output by yet more orders of magnitude, the importance 
of investment in optimized data analysis solutions to address the 
increasingly intractable problem of genomic sequence analysis becomes 
clear. 

With that in mind, effort has been invested into developing ways 
to decrease the performance time of BLAST while still maintaining 
high sensitivity. Improvements on BLAST have included parallelized 
versions using threads on symmetric multiprocessor machines (though 
still limited due to the limited number of processors used); Hyper-
blast achieved 12 times speed-up using inter-node parallelism and a 
specialized database partitioning method [7]; CloudBlast delivered 57 
times speedup compared to the 52.4 of the publicly available mpiBlast 

*Corresponding authors: Makedonka Mitreva, The Genome Institute, Washington 
University, St. Louis, MO 63108, USA, Tel: +1 314 286 2005; Fax: +1 314 286
1810; E-mail: mmitreva@genome.wustl.edu 

George M Weinstock, The Genome Institute, Washington University, St. Louis, MO 
63108, USA, E-mail: gweinsto@genome.wustl.edu 

Curtis Davis, MultiCoreWare, St. Louis, MO 63108, United States, 4041 Forest 
Park Avenue, St.Louis, MO – 63112, USA, Tel: +1 1 636 686 0607; Fax: +1 408-
252-1200; E-mail: curtis@multicorewareinc.com 

Received May 20, 2013; Accepted July 25, 2013; Published July 31, 2013

Citation: Davis C, Kota K, Baldhandapani V, Gong W, Abubucker S, et al. (2013) 
mBLAST: Keeping up with the Sequencing Explosion for (Meta) Genome Analysis. 
J Data Mining Genomics Proteomics 4: 135. doi:10.4172/2153-0602.1000135

Copyright: © 2013 Davis C, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

mBLAST: Keeping up with the Sequencing Explosion for (Meta) Genome 
Analysis
Curtis Davis1*, Karthik Kota2, Venkat Baldhandapani1, Wei Gong1, Sahar Abubucker2, Eric Becker2, John Martin2, Kristine M. Wylie2, Radhika 
Khetani3, Matthew E. Hudson3, George M. Weinstock2,4*, and Makedonka Mitreva2,4,5*
1Multi Core Ware, St. Louis, MO 63108, USA
2The Genome Institute, Washington University, St. Louis, MO 63108, USA
3Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
4Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
5Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA

Abstract
Recent advances in next-generation sequencing technologies require alignment algorithms and software that can 

keep pace with heightened data production. Standard algorithms, especially protein similarity searches, represent 
significant bottlenecks in analysis pipelines. For metagenomic approaches in particular, it is now often necessary to 
search hundreds of millions of sequence reads against large databases. Here we describe mBLAST, an accelerated 
search algorithm for translated and/or protein alignments to large datasets based on the Basic Local Alignment Search 
Tool (BLAST) and retaining the high sensitivity of BLAST. The mBLAST algorithms achieve substantial speed up over 
the National Center for Biotechnology Information (NCBI) programs BLASTX, TBLASTX and BLASTP for large datasets, 
allowing analysis within reasonable timeframes on standard computer architectures. In this article, the impact of mBLAST 
is demonstrated with sequences originating from the microbiota of healthy humans from the Human Microbiome Project. 
mBLAST is designed as a plug-in replacement for BLAST for any study that involves short-read sequences and includes 
high-throughput analysis. The mBLAST software is freely available to academic users at www.multicorewareinc.com. 
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[8]; Dynamic Blast on UABgrid resources showed 50% reduction in time 
[9] and because BLAST is highly parallel in nature, making it amenable 
to adaptation to a grid environment [10], researchers increasingly use 
larger grids to reduce the execution time of search jobs.

While these improvements in the execution time of BLAST are 
useful, there is still a considerable challenge for projects that produce 
terabase amounts of sequence data, where greater acceleration of 
BLAST execution is required. One such field that uses the technological 
breakthroughs associated with the decreased cost of DNA sequencing 
is metagenomics (e.g. [11,12]). Shotgun sequencing for metagenomic 
profiling of microbial communities and other complementary 
technologies (e.g. [13]) provides information not only on the organismal 
components (bacterial, viral, and eukaryotic) of a microbiome, but also 
on the whole gene content of the community, for example allowing 
description of the metabolic capacity of a community, or detection of 
genes of interest such as antibiotic resistances or virulence factors. For 
shotgun metagenomic analysis there is a need for deep sequencing of 
each specimen, in order to adequately sample the genomes of many 
different organisms, present at a wide range of abundance. These 
results in terabase-scale data sets that must be analyzed at the level of 
individual DNA sequence reads. Since the source organism is unknown 
in these experiments, searches are necessary against all known 
sequences from all candidate organisms, further compounding the 
computational challenge. While such experiments are still expensive, it 
is now possible, for example, to contemplate sequencing the organisms 
capable of living on or in the human body [14], a project many times 
more challenging than the human genome itself. It is also possible to 
sequence whole genomes from entire ecosystems living on plants, in 
soils and in underground hydrocarbon deposits and contaminated 
locations. However, data analysis is the most significant bottleneck 
in the ability to convert massive metagenomic data sets into sound 
scientific conclusions. 

To address this analysis challenge, we set out to optimize BLAST 
for the latest multi-core CPUs, which as a hardware class have greatly 
increased in their performance and parallelism since the original 
BLAST algorithm was devised. The mBLAST package consists of 
mBLASTX, mBLASTP and mTBLASTX, which perform alignments 
similar to BLASTX, BLASTP and TBLASTX respectively (named for 
the BLAST programs they closely emulate with an additional prefix 
“m”, connoting a thousand-fold performance gain). According to our 
performance tests on an 8 node cluster system, the mBLAST suite of 
programs achieved a speed-up of several thousand fold, with both read- 
and gene-length queries, and only marginal reduction in sensitivity. 
The algorithm was used to successfully process over 3 TB of microbial 
sequences from the Human Microbiome Project (HMP) [15,16] within 
the time boundaries of the project. The datasets used for estimating 
speed-up and performance evaluation were from the HMP however the 
algorithm can be applied to any sequence data used for protein-level 
comparison to databases. 

Materials and Methods
Hardware configuration

The computer used for NCBI blast time benchmarks was a Dell 
M610 blade with 2x quad-core E5540 2.53 Ghz CPUs (hyperthreading 
disabled), 48 GB of RAM, and 2×300 GB 10K RPM SAS drives striped 
in a RAID 0 configurations. The blade OS was Ubuntu 8.04 (kernel 
2.6.28-11-server). The configuration of the machine used for mBLAST 

algorithms was a Dell PowerEdge M610 Blade with 2 x Intel Xeon quad 
core E5540 (2.53 GHz) processors, 48 GB of RAM, 2×250 GB striped 
(RAID 0) hard drives (500 GB total), two 1Gb/s Broadcom network 
interface cards (only one of them was actually connected to the network 
for a total of 1 Gb/s) and running Ubuntu LTS 10.04 and LSF 7.04. 
The algorithms were also directly compared on different server class 
machines (with very similar specifications) at the University of Illinois 
with very closely comparable results.

Each BLAST job was repeated 3 times and the average time is used 
as the standard for comparison. NCBI BLAST 2.2.22+ was used for all 
the benchmarks by strictly controlling the number of cores (1 core) 
with the most sensitive parameter sets. Between each run we cleared 
out the cached memory on the test blade (as processes are run on the 
blades, the Linux kernel will attempt to cache data in memory to avoid 
having to read it from disk). 

Comparison of read level protein searches

Illumina reads from a metagenomic sample were mapped to a 
set of Roche-454 pyrosequencing reads from the same sample using 
BLAT [17], with a cut off of 95% identify over 90% of the Illumina read. 
Mapping to KEGG version 58 [18] was used for selecting pyrosequences 
reads, requiring an alignment e-value of at least 1e-05 to be considered 
a hit. For each of 1,000 randomly selected Roche-454 reads that 
hit KEGG, we selected 100 random Illumina reads with significant 
sequence matches as representative data for comparing BLASTX hits of 
both sequence datasets. The Illumina read hits were parsed using 1e-05 
and the Roche/454 pyrosequence hits were parsed using 35 bits and 55 
% identity.

Running mBLASTX

To execute an mBLASTX alignment you first must pre-generate 
a neighborhood matrix from the scoring matrix you plan to use (this 
resource is pre-generated for the default BLOSUM62 matrix). Then you 
need to create a set of accelerated data files for the reference. Once these 
files are created for a specific scoring matrix and/or reference they can 
be used repeatedly. These steps are only needed the first time you use a 
new subject database.

MNeighborGen is used to generate the neighborhood matrix (for 
details see Supplementary File 1). The program MHashGen builds the 
accelerated data files for the reference, (for details see Supplementary 
File 2).

The mBLAST software package includes mBLASTX, mTBLASTX 
and mBLASTP for aligning translated nucleotide queries to a protein 
database, translated queries to a translated nucleotide database and 
protein queries to a protein database, respectively. For proper usage 
of these tools along with a full description of available parameters and 
their function see Supplementary File 3 and Supplementary File 4.

iBLASTX

To evaluate the effects of optimizations on sensitivity, a program 
called inverse BLASTX (iBLASTX) was developed. In iBLASTX, 
the following notation is used: Q is the set of queries (in the case 
of BLASTX, a set of strings of nucleotide sequences), R is the set of 
references (in the case of BLASTX, the reference database of proteins 
used was NR), S is the set of seeds and neighbors that are candidates 
for extension, H is the space of High Scoring Pairs (HSP) (the output of 
BLASTX that identifies the alignments), U is the function that extends 
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the seeds, calculates E-values, and then compares against the statistical 
E-values to identify the alignments H. With this notation, BLASTX can 
be described as follows:

H=U (S(P1, P2,,…, PM) (Q)) where Pi are the parameters and M is the 
number of parameters. mBLASTX can be described in exactly the same 
terms. Note that the transformation, U, which follows the seed finding 
stage, is essentially the same in BLASTX and mBLASTX. 

In order to identify the correct settings of the parameters Pi, a 
sequential search of the parameter space (which would be otherwise 
computationally intractable itself) is conducted using iBLASTXto 
identify the (P1, P2,…,PM) so that at least 98% of the HSPs in H are 
present in H. For each common HSP in H and H, iBLASTX identifies 
the seed(s) in S, which would result in that HSP when subjected to 
transformation U. For each value of a parameter, it identifies whether 
this HSP would be output by mBLASTX or not and creates a histogram 
of the loss of sensitivity of mBLASTX vs. BLASTX for various values of 
the parameter. After identifying the values of the parameter for which 
the sensitivity is maintained, iBLASTX modifies the next parameter 
using the previously chosen parameter at that fixed value. 

Comparison of BLASTX against mBLASTX

The input query used for this comparison is a random set of 100 
bp Illumina reads obtained from the SRA sample SRS015890. A subset 
of queries with various sizes were randomly picked from a database 
containing 16,595,429 queries and used for testing mBLASTX. These 
16.5 million queries were derived from a 20,599,707 sequence dataset 
that was screened for human contaminants, redundancy (100% 
identity over 100% length) and reads containing N, resulting in a 1.2 
Gb database consisting of 2,482,697 proteins. Three distinct dataset 
sizes were chosen to address specific questions. A small dataset with 
1000 reads was selected as a set of reads that can be processed in 5-10 
mins, therefore appropriate for the quick testing of the correctness of 
the mBLAST algorithm and its sensitivity/specificity to NCBI BLASTX. 
The medium dataset consisted of 5,000 reads and it was designed to 
finish overnight with NCBI BLASTX. This set was aimed to provide 
comparisons of the algorithm on medium size sets. The large dataset 
of 100,000 reads was prepared to gauge the time performance of the 
datasets in addition to specificity comparisons. The program was also 
extensively tested on even larger datasets such consisting of 1 million 
and 20 million queries to analyze its memory handling capability and 
optimal time performance. Such large datasets have a very high run 
cost with NCBI BLAST algorithms, hence direct comparisons were not 
possible with datasets over 1 million.

The BLASTX alignments were generated using the NCBI-
blastx-2.2.22+ with the following command ‘blastxplus -dbAll_
annodb. faa -query <input> -word_size 3 -threshold 14-seg no -num_
descriptions 10–num_alignments 10-out <output>’. Top 10 hits that 
have an e-value of 1e-5 or lower were then parsed using a custom Perl 
script to obtain results for convenient comparison. The mBLASTX 
results were generated using mBLASTX Version 1.1.05 02/24/2011 
(Linux) with the following command line ‘mblastx-m 32-q <input>-d 
<data directory containing the mhashgen hash files for the database>-o 
<output>’. The sensitivity and specificity of both algorithms were then 
compared by calculating the number of queries hit, common queries 
that have hits in both, queries that do not have hits in both, number of 
unique hits in each of the outputs and number of hits shared by both 
using a Perl script. The following criteria were used for considering hits 

found by both algorithms: a) Same query hitting the same subject-top 
blastx hit present in top “n” mblastx hits where n=1,5,10 and 32; b) The 
subject in the alignments are in the same frame; c) The start and stop 
positions of the hit in the subject should be within ± 10 positions. 

For the pathway module analysis the KEGG modules that 
represent modular functional units of the KEGG pathways [18] were 
used. Module coverage was calculated through HUMAnN [19] from 
MBLASTX alignments against the KEGG genes database (version 58) 
with top 20 hit and e-value of 1. Modules that were covered at 90% 
or higher in 90% of the samples in each body site were identified and 
plotted. Only modules with at least 4 genes were considered. In total 
624 samples were analyzed (stool 137 samples, posterior fornix 53, 
buccal mucosa 109, anterior nares 87, supra gingival plaque 115 and 
tongue dorsum 123) [16].

Comparison of TBLASTX against mTBLASTX

The database used for TBLASTX alignments for the virus detection 
pipeline included sequences from human and microbial genomes 
(bacteria, archaea, small eukaryota, virus and bacteriophage). The 
subject database included all sequences in NCBI NT, not just complete 
genomes (sequences 297,590, size 8.6 Gb), in order to incorporate as 
much diversity as possible. The query sequence was obtained from a 
plasma sample from a febrile child. Total nucleic acids were extracted 
from the sample, RNA was reverse transcribed, and the cDNA and 
DNA were amplified. We derived our methods for cDNA synthesis 
and amplification from [20,21]. Ungapped mTBLASTX results were 
compared to TBLASTX results, both parsed at 1e-5 (mTBLASTX top 
32 results, TBLASTX also top 32) using Perl scripts and was used to 
generate the sensitivity report using the following criteria: a) Same 
query hitting the same subject-top TBLASTX hit present in top “n” 
mTBLASTX hits where n=1,5,10 and 32; b) The query in the alignments 
are in the same frame; c) The subject in the alignments are in the same 
frame; d) The start and stop positions of the hit in the subject should be 
within ± 30% of the TBLASTX alignment length. 

For the virus detection analysis we obtained Illumina GAIIX 
sequences that had been generated from plasma samples collected from 
febrile children ([22]; Acc. No: SRR057960, SRR057863, SRR057962, 
SRR057864, SRR057938, SRR057831, SRR057939 and SRR057832). 
A nucleotide database was made from all of the viral entries in NT, 
downloaded on October 10, 2011. Database sequences that were 
less than 100 basepairs were removed. Illumina GAIIX sequences 
were aligned to this database using mTBLASTX with the following 
parameters: -f T –t 26 –Z 5 –X 7 –Y 20 –M 40 –T 64 –m 6 –I 50 –e 
1.0E-03. Output was parsed to retain alignments with greater than 
70% identity for further analysis. The database was translated into 6 
frames for mBLASTX alignments using transeq [23] with the following 
parameters: -frame 6 -table 0 –trim. Illumina sequences were aligned 
to the translated reference database using mBLASTX with the same 
parameters and parsing conditions described above for mTBLASTX. 
For comparison, nucleotide sequence alignments were carried out 
using BLASTN using the following parameters: --repeat-freq 97% -e 
10% -U –T 4 –w 15 –-top-random–read-names–penalize-unknowns. 

Comparison of BLASTP against mBLASTP

The input queries used for this comparison are the proteins deduced 
from genes predicted on the scaffolds from the metagenomic assembly 
of SRAsample SRS013215 (available at: ftp://public-ftp.hmpdacc.org/
HMHASM/assemblies/SRS013215.scaffolds.fa.gz). The database used 
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was uniref100 DB (version 11/30/2010; 11,465,597 sequences, size 
5 Gb). The BLASTP alignments were generated using the command 
‘blastall -v 20 -b 20 -X 15 -e 1e-5 -M BLOSUM62 -J F -K 10 -f 11 -Z 
25.0 -W 3 -U F -I F -E -1 -y 7.0 -G -1 -A 40 -Y 0.0 -F “T” -g T -p 
blastp -z 1702432768 -m 7’. Top 20 hits were parsed in the btab format. 
The mBLASTP results were generated using mBLASTP version 1.4.0 
01/27/2011 (Linux) with the following command line (30 % identity of 
HSP), ‘mblastp -F S -t 22 -Z 2 -X 5 -Y 42 -d <data directory containing 
the mhashgen hash files for the database> -q <input>’. The sensitivity 
and specificity was calculated similar to the BLASTX vs. mBLASTX 
comparison, using internal Perl scripts. The criteria for considering hits 
found by both algorithms were: a) Same query hitting the same subject 
-top blastp hit present in top “n” mblastp hits where n=1, 5, 10 and 32; 
b) The subject in the alignments are in the same frame; c) The start and 
stop positions of the hit in the subject should be within ± 20% of the 
blastp alignment length. 

Results
Read length and alignment sensitivity

Read lengths vary considerably on different sequencing platforms, 
from less than 100 to over 1,000 bases per read. Two of the major 
platforms are Illumina, with (at the time of performing our analysis 
tests) a standard read length of 100 bp, and Roche-454 with reads that 
average around 400 bases. Illumina has advantages over Roche-454 
in producing more reads per run at a lower cost and higher accuracy. 
In some cases, however, the shorter Illumina reads provide less 
information for database alignments than Roche-454 data. To examine 
the differences in using Illumina reads or longer Roche-454 reads, we 
compared alignments to a common reference database from both sets 
of data. 1,000 Roche-454 reads and 100 Illumina reads that mapped 
to each were randomly selected from a metagenomic DNA sample 
collected from human stool (available in the NCBI Short Read Archive 
under the accession no. SRS015890) as representative data to allow a 
direct comparison between the two technologies. Each of these sets was 
aligned to the KEGG database [18], and the hits from the Roche-454 
reads were compared to the hits of the 100 corresponding Ilumina 
reads. In 90% of the cases, the same KO (KEGG ortholog) annotation 
was obtained from corresponding sets of Roche-454 and Illumina 
reads. False negative rate, defined as KOs hit only by the Roche/454 but 
not Illumina reads, was estimated to be 12% (117/1,000). False positive 
rate, defined as the Illumina reads that hit additional or different KOs 
than the Roche-454 reads, was 8% (84/1,000). We thus concluded that 
the lower cost of sampling with 100 bp Illumina reads does not sacrifice 
the sensitivity seen with longer read lengths. We have thus focused on 
accelerating BLAST for use with Illumina data, which is expected to 
pose the biggest challenge.

Optimization of BLASTX

The BLAST algorithm can be divided into six stages (Figure 1A-F). 
The seeding step (B) finds and marks the locations of short sequences 
of length W (word size) in the queries and reference strings that are 
either identical or are neighbors, i.e., whose score when computed 
using a substitution matrix such as the Blosum 62 matrix [24] is above 
a certain T (threshold ) value. Finding seeds is a critical aspect of the 
BLAST algorithm. By identifying the “right” seeds, i.e., the ones that 
result in sought-after alignments, and reducing the number of “wrong” 
or unproductive seeds at this step, the number of computations can 
be reduced dramatically. In the extension step (C), alignments are 

generated from the seeds. When the critical parameter controlling 
extensions, X (drop-off score), is set too low, the alignments terminate 
after only a few mismatches have been found, while high values of 
X allow alignments to continue through dissimilar regions. In the 
evaluation step, alignments are compared to an E-value threshold to 
identify alignments that are statistically relevant. The combination of 
these parameters (W, T, X) has a significant effect on the speed and 
sensitivity (S, score) of BLAST searches. 

Our BLAST time benchmarks were performed on dedicated 
systems with hardware configuration specified in three replicates (see 
Methods). An average total time per query (of 100 bp length) against 
the NR database for NCBI’s BLASTX using default parameters is 828 
milliseconds (ms). The “finding seeds” step (B) consumed 654 ms of the 
processing time, while 46 ms was spent in extension (C) and scoring 
(D) steps, and 128 ms was required for loading and writing data (steps 
A and F), and for identifying the highest scoring alignments (E) (Figure 
2). For a data analyst to be able to keep up with NGS data production 

Protein
database

Read data

Seed

Extend

Score extensions

Filter low scoring
alignments

Output results

mHashGen

HASH tables

A

B

C

D

E

  F

Search space

Seeding is
 controlled by 

W and T

Score cutoff is
controlled by S

Extension is 
controlled by X

Figure 1: The processing steps in the mBLASTX workflow. The database is 
first indexed using the mHashGen module and these index files are used in the 
alignment process. The query files are reads (A) and matching seeds between 
the queries and subjects are identified (B). These matches are then extended to 
high scoring segment pairs (C). These extensions are evaluated (D) and only 
significant alignments are kept (E) and displayed in the output (F).

700000

600000

500000

400000

300000

200000

100000

           0
A, E, F            B                C, D

M
ic

ro
se

co
nd

s

Blast step

mBLASTX
BLASTX

Figure 2: Timing per BLAST phases and X-factor speed-up. The BLAST steps 
on the x-axis are defined as:read data (A), seed (B), extend (C), score extensions 
(D), filter low scoring alignments (E), output results (F).



Citation: Davis C, Kota K, Baldhandapani V, Gong W, Abubucker S, et al. (2013) mBLAST: Keeping up with the Sequencing Explosion for (Meta) 
Genome Analysis. J Data Mining Genomics Proteomics 4: 135. doi:10.4172/2153-0602.1000135

Page 5 of 11

Volume 4 • Issue 3 • 1000135J Data Mining Genomics Proteomics
ISSN: 2153-0602 JDMGP, an open access journal

Bioinformatics for Highthroughput Sequencing

one would need at least a 1,000X reduction in processing time per 
query, i.e., to go from 828 ms to less than 828 microseconds (µs) per 
query, therefore it was necessary to significantly reduce computational 
time at each step of the process. Seed finding was investigated first 
because it was the lengthiest stage, and moreover, reducing the number 
of seeds sent to later stages of the pipeline would also reduce subsequent 
extension computations considerably, allowing for early elimination of 
insignificant alignments.

Optimization of the seeds in mBLASTX

We reduced the number of seeds that are present in the seed 
finding stage by increasing the seed size parameter W. By increasing 
W we potentially missed some local alignments that BLASTX finds, 
however, that were offset by decreasing the size of the parameter T, 
which increases the number of neighbors that each seed has. iBLASTX 
was used to evaluate the interrelationship between the parameter set, 
(W, T), and the strength of the hits and missed hits. The sensitivity 
target was set as greater than 98%, i.e. 98% of the HSPs in H of BLASTX 
should be present in the output H of mBLASTX. False positives (i.e., 
alignments that were found by mBLASTX and not found by BLASTX) 
were less than 1% (Figure 3A), compared to BLASTX alignments used 
as the gold standard, and found to contribute to better downstream 

utilization of the HSP results. Increasing the number of top hits (N) of 
mBLASTX increased the overall sensitivity compared to the BLASTX 
algorithm (Figure 3B). 
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Table 1: Sensitivity of mBLAST algorithms compared to BLASTa.

Aligner Queries 
with hits 
(BLAST)

Queries 
with hits 

(mBLAST)

Common 
queries 

(#)

Common 
queries 

(%)

Top blast 
within top 
n mBLAST 

matches (%)b

mBLASTX 26,339 26,174 25,958 98.6 79.3
26,339 26,174 25,958 98.6 97.1
26,339 26,174 25,958 98.6 97.9
26,339 26,174 25,958 98.6 98.0

mTBLASTX 94,920 99,844 94,849 99.9 77.3
94,920 99,844 94,849 99.9 92.9
94,920 99,844 94,849 99.9 94.5
94,920 99,844 94,849 99.9 96.0

mBLASTP 35,713 35,739 35,451 99.3 90.8
35,713 35,739 35,451 99.3 95.2
35,713 35,739 35,451 99.3 95.7
35,713 35,739 35,451 99.3 96.3
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For example, a simplified version of this method for optimizing the 
parameter T while maintaining greater than 98% sensitivity follows: 
The queries that were used are Illumina reads of a whole genome 
shotgun (WGS) metagenomic sample with 100,000, 1,000,000 and 
6,000,000 query sequences against a protein database. The reported 
data (Table 1) are derived from the set with 100,000 queries. Figure 4 
(Single Seed (Hit) iBLASTX and various word sizes W with HSPs with 
at least 1e-05 E-value) shows a simplified version of iBLASTX where 
the effects of changing the W from 3 to 8 (W3, W8 respectively) are 
scanned, represented in the various curves with the impact of changing 
the threshold versus percentage of HSPs missed. This graph enables 
choosing the correct threshold per word size while retaining acceptably 
small loss of sensitivity. For example, W6 with T31 resulted in a loss of 
less than 1% of the HSPs (Figure 4). While using W6 with T29 and a 
less stringent match for the HSPs (cutoff of at least 23 positives out of 
33 amino acids or more; data not shown) results in approximately the 
same percentage of missed HSPs, the first can be thought of as casting a 
smaller net for only the seeds of interest and results in significantly less 
work than W6 T29.

In order to further reduce the workloads that do not result in an 
alignment, it is possible to add additional parameters to drop seeds 
that result in unlikely extensions. With these additional parameters, 
mBLASTX can be described as follows: 

H=E (S(P1, P2,,,…, PM,, O1,, O2,…, ON) (Oj)), where Oj are the parameters and 
N is the number of new parameters. After completing the search for the 
parameters, iBLASTX does a similar sequential search of the thresholds 
for the new parameters Oj. This allows users of particular sets of queries 
and particular HSP acceptance criteria to find the set of parameters (P1, 
P2,,,…,PM,, O1,, O2,…, ON) to achieve the required sensitivity. 

Several other optimizations were applied that did not impact the 
sensitivity of the search:

(i) Repetitive building of accelerated data structures for the reference 
database. Frequently users need to run BLASTX for billions of queries 
against several different protein databases (e.g. NR, KEGG [25], UniRef 
[26], MetaCyc [27], Antibiotic resistance genes DB [28], transporter 

DB [29], CAZy [30], to name a few). Building of the accelerated data 
structure of the reference database was separated from the other steps, 
so that it would occur only once per database, using the mHashGen 
program (Figure 1). Adding these data structures significantly 
increased the size of the reference data, by a factor of 15. For example, 
the GenBank non-redund and protein database used as a standard 
contained about 3.4 billion amino acids, which required approximately 
57 GB of disk space to store the accelerated data structure with 
additional filtering information. This data structure can easily be stored 
on disks, but is still too big to be processed simultaneously in servers 
with normal configurations. Therefore the subject database was split 
into 8 distinct parts of nearly the same size that could then be processed 
separately by servers with 32 GB (Gigabytes) of RAM memory. Building 
the accelerated data structure files for the NR database took around 2 
hours. Since this process only happens once for the entire dataset of 500 
billion queries, it only added 14 ns (nanoseconds) to the per query time. 
This time is within the measurement noise of the final per query time 
and was not included in estimating speed-up. 

(ii) Creation of query batches of optimized size and streaming 
them in parallel through multiple CPU cores. We were able to process 
approximately 600 million amino acids in the same batch. By this 
means, redundant words in the batch need not be searched repeatedly, 
and thus the main gain in speed is not seen with a limited number of 
input sequences (Figure 5). 

(iii) Avoidance of redundant extensions: Redundant extensions 
happen when multiple seeds map into the same extended region. This 
was eliminated by keeping track of all the extensions in an accelerated 
data structure and performing a lookup of this accelerated data 
structure prior to the execution of the extension step.

(iv) Trades-offs in favor of larger memory and disk spaces that 
are available on servers used for analysis: With larger RAM available 
on modern servers, accelerated data structures can be used to quickly 
access information. In addition, due to the highly ordered way that the 
data is being processed, it can be organized so that all queries are only 
streamed once.

(v) Elimination of huge features lists supported in BLAST that 
impact performance: Many of the options in BLASTX resulted in 
additional checks within the key segments of execution that were 
eliminated in mBLASTX. Features that impacted speed but have a 
limited impact for the short-read queries we are focused on were 
thus either modified or dropped. These included our application of a 
simplified gapping strategy, dropping scoring refinement by adjusting 
the substitution matrix on a per query basis, and removing the low-
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complexity filtering programs SEG [31] or DUST [32] that are an 
integral part of BLAST. These had either an effect on a very small subset 
of queries or no impact on queries of 100 bp. Simplified gapping resulted 
in the biggest effect of these changes, a loss of around 0.1% of HSPs. Re-
scoring usually resulted in no significant changes in bit scores for these 
short queries. For SEG/DUST low complexity filtering, this can still be 
applied in a pre-processing step, which is desirable for large datasets to 
both optimize compute time for query sets subject to multiple searches, 
and to enable more control over finding low complexity regions. 

(vi)	 Avoidance of poor multi-threading: Pipelining and 
parallelizing work for this algorithm was achieved easily as no inter-
dependencies exist between individual queries. A near-linear speedup 
was achieved as the number of cores was increased in the tested server 
configurations, up to 32 cores.

Evaluating performance of mBLASTX

The performance of mBLASTX was evaluated using 100 bp 

Illumina reads against a database of proteins (see Methods). BLASTX 
with the typical parameters described above was treated as the golden 
standard. The 100 bp shotgun metagenomic reads were screened to 
remove low complexity regions using the ‘DUST’ program [32]. Overall 
performance for an 8 core Intel Nehalem node with 32 GB of memory 
was approximately 1600 fold the performance of the exact same 
node running NCBI BLASTX on all 8 cores (Table 2 and Figure 2). 
Performance benchmarks for mBLASTX were taken from one million 
to twenty million queries, where the average time per query was used 
for determining the acceleration factor (similar to NCBI BLASTX, see 
Methods). Most of the reduction in CPU time was derived from: a) 
database preprocessing, parallel query processing, dropping duplicate 
extensions and reduction in the number of seeds; these enabled a 
savings of ~699.74 ms; b) Reducing the feature list, pipelining I/O and 
parallelization. These optimizations are hard to quantify directly, but the 
remaining time saved by this class of optimization was approximately 
~128.76 ms.

mBLAST Machine configuration Queries Time per query (ms) x-factora Memory X-factor limit
mBLASTX Small machine (Quad core Nehalem 

12 GB)
100,000 3.200 258 12 GB Memory limited

20,000,000 3.200 258 12 GB Memory limited
Large machine (Dual socket-quad 
Nehalem core 48 GB memory)

100,000 0.992 834 24 GB Query limited
1,000,000 0.604 1370 32 GB Query limited
6,000,000 0.510 1623 48 GB Query limit for 48 GB

20,000,000 0.510 1623 48 GB Memory limited
mTBLASTX Small machine (Quad core Nehalem 

12 GB)
100,000 3.9 499 12 GB Memory limited

20,000,000 3.9 499 12 GB Memory limited
Large machine (Dual socket-quad 
Nehalem core 48 GB memory)

100,000 1.2 1623 24 GB Query Limited
1,000,000 0.3 6490 32 GB Memory limited
6,000,000 0.3 6490 48 GB Memory limited
20,000,000 0.3 6490 48 GB Memory limited

mBLASTP Small machine (Quad core Nehalem 
12 GB)

100,000 9.4 94 12 GB Memory limited
20,000,000 9.3 95 12 GB Memory limited

Large machine (Dual socket-quad 
Nehalem core 48 GB memory)

100,000 2.5 357 24 GB Query Limited
1,000,000 1.2 772 32 GB Memory limited
6,000,000 1.1 779 48 GB Memory limited
20,000,000 1.1 779 48 GB Memory limited

aLarge machine BLAST query procesing time was used to calculate x-factor: 828 msec for BLASTX, 888msec for BLASTP and 1947 msec for TBLASTX. 
Table 2: mBLAST algorithm performance on different computer architecturesa.

Blast/mBLAST Samples Sequences Aligned to KEGG+c and/or 
UNIREF100 (days)

analysis Body Region Body site (#) (Millions) BLAST mBLAST
BLASTX and mBLASTX 
(metabolic profiling)

Nasal Cavity Anterior_nares 88 141 1,351.3 0.8
Oral Cavity Buccal_mucosa 109 1,344 12,882.9 7.9

Supragingival_plaque 116 6,651 63,741.4 39.3
Tongue_dorsum 125 10,630 101,875.5 62.7

GI Tractb Stool 139 14,472 138,689.7 85.4
Vaginal Tract Posterior_fornix 54 250 2,396.5 1.5

TBLASTX  andmTBALSTX 
(virus discovery)

Nasal Cavity Anterior_nares 88 94 2,122.6 0.3
Oral Cavity Buccal_mucosa 109 527 11,875.0 1.8

Supragingival_plaque 116 3,006 67,747.9 10.4
Tongue_dorsum 125 4,986 112,351.4 17.3

GI Tractb Stool 139 5,615 126,535.3 19.5
Vaginal Tract Posterior_fornix 54 57 1,279.2 0.2

BLASTP and mBLASTP 
(ORF annotation)

 All body site ORFs 631 90 924.8 1.2

aThe timing is based on performance using Large machine (dual socket-quad Nehalem core 48 GB memory); bGI Tract, Gastro Intestinal Tract; KEGG+c, is the combination 
of the KEGG database and 6 other functional databases 

Table 3: The Human Microbiome Dataset and time required for analysisa.
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Evaluating sensitivities of mBLASTX

The sensitivity of mBLASTX was measured by comparing the 
highest scoring HSPs found for a set of 100,000 queries by NCBI 
BLASTX and mBLASTX on the KEGG database [18]. For this 
sensitivity measurement, the NCBI BLASTX was run with W3 T14 
(recommended parameters for protein search based on [3]) and 
mBLASTX was run with W6 T26. A match is defined as the top HSP 
found by NCBI BLASTX also being found by mBLASTX with the same 
values for query and reference sequence offsets, length of the HSP and 
E-value. The criteria for considering overlapped hits between BLASTX 
and mBLASTX included: i) same query hitting the same subject–the 
top BLASTX hit can be any of ‘n’ top ranked mBLASTX hits where n 
=1,3,5, 10 or 32; ii) the subject sequence should be in the same frame in 
the alignment between BLASTX and mBLASTX; iii) the start and stop 
positions of the hit in the subject should be within ± 10 residues for read 
level searches. For this set of queries and parameter setting, BLASTX 
found 26,339 top HSPs and mBLASTX found 26,174 matching HSPs 
–a sensitivity measurement of 98.6% (Table 1). For the above set of 
parameters, BLASTX runs at a pace of 828 ms/query while running 2 
million queries, while mBLASTX runs at a pace of about 510 µs/query 
–a speedup of about 1,600X (Figure 2). HSPs missed by mBLASTX 
(Figure 3A) were a result of using larger words size with T26 (~0.46% 
of HSPs; 77% of missed HSPs) and missed gaps (~0.54% of HSPs; 23% 
of missed HSPs). The additional 216 HSP found by mBLASTX that 
were not top hits with BLASTX were a result of the lower average 3mer 
threshold of 13 vs. 14 used when performing protein searches (based 
on [3]).

This approach resulted in a dramatic performance gain in 
mBLASTX. The processing time per query dropped from 828 ms to 
510 µs with a 98.6% sensitivity, saving 827.49 ms per query; 1,600 times 
faster and 0.6% above target sensitivity of 98% (Table 2; Figure 3A). 
Other advantages of mBLASTX include the ability to map millions of 
queries at a time (Figure 5), no database size limitations, no limit on 
the read/query length and an option to compress peptide strings in the 
output for a more manageable result file size. 

The performance and sensitivity obtained with mBLASTX enables 
performing metabolic reconstruction of metabolic capabilities of 
microbial communities at a read level in a time frame not possible 
before. The mBLASTX output generated when Illumina 100 base reads 
(microbiome samples from healthy humans) were searched against 
the KEGG database [18] provided a framework to compare functional 
diversity and organismal ecology in the human microbiome. For 
example, when microbiomes of 4 body regions are compared, a total 
of 115 metabolic modules are detected; of these 16 are ubiquitously 
present modules, and 42 are shared only among the digestive tract 
(i.e. oral cavity and stool; Figure 6A). Of the 107 metabolic modules 
within the oral cavity 82 were common to all (Figure 6B), and the 
others were shared among two or unique to one oral cavity niche 
within the microbiome. When examining the pathway modules unique 
to a body site (for example the 4 modules unique to the supragingival 
plaque (M00012Glyoxylate cycle, M00095 C5 isoprenoid biosynthesis, 
mevalonate pathway, M00117 Ubiquinone biosynthesis, prokaryotes, 
chorismate and M00326 RTX toxin transport system)), the results 
indicate that these modules are either absent in the buccal mucosa 
and the tongue dorsum, or alternative reactions are present because 
the coverage is lower than the required 100% (average 0.43% and 
0.56% coverage of the modules for buccal mucosa and tongue dorsum, 
respectively). Metabolic capabilities of ~700 microbial communities 

(determined using mBLASTX) occupying 6 different body niches of 
healthy individuals and their associations with the environment are in 
details investigated in [15].

Evaluating performance of mTBLASTX

As BLASTX and TBLASTX are very similar, with the main difference 
being the need to translate the database before doing the search. We 
applied the same methodologies developed for mBLASTX (see above) 
to increase the performance of mTBLASTX, resulting in very similar 
sensitivity performance tomBLASTX (Table 1) and with a much higher 
speed up (over 6,000 fold, Table 2). The beta version of mTBLASTX 
has improved gap analysis compared to the original algorithm used 
in mBLASTX for longer queries. To demonstrate the importance of 
rapid translated alignments in metagenomic sequence analysis, we 
analyzed several ssDNA and ssRNA viruses in plasma samples obtained 
from febrile children (Figure 7) [22]. In metagenomic samples, virus 
sequences are generally rare. Therefore, it is important to detect every 
read of viral origin by aligning to a genome or proteome database in 
order to characterize the virome (Figure 7A). Nucleotide alignments 
identify highly conserved sequences (Figure 7B, enteroviruses, and 
Figure 7C, dependoviruses), however, since viral nucleotide sequences 
evolve very rapidly, translated alignments allow for the identification 
of many more viral reads in some cases (Figure 7B, enteroviruses; 
Figure 7C, dependoviruses; Figure 7D and Figure 7E anelloviruses). 
This enhances the viral signal in the sample, and additional reads can 
enhance or enable contig assembly, virus subtyping, and comparative 
genomics [22]. In other cases, translated alignments are critical for even 
detecting a virus in a sample (Figure 7B and 7C, anelloviruses). While 
the biological significance of low numbers of viral sequence reads is not 
clear, these observations can be confirmed with PCR experiments or 
additional sequencing [33]. 

Evaluating performance of mBLASTP

The BLASTP algorithm was also optimized via the same strategy 
described above, giving rise to mBLASTP(see Methods for details) 
with ~800x performance increase over BLASTP (Table 2). Using the 
following criteria for considering hits found by both algorithms: a) 
Same query hitting the same subject-top blastp hit present in top “n” 
mBLASTP hits where n=1, 5, 10 and 32; b) The subject in the alignments 
are in the same frame; c) The start and stop positions of the hit in the 
subject should be within ± 20% of the BLASTP alignment length, we 
achieved >99% match sensitivity relative to BLASTP (Table 1).

The primary utility of mBLASTP in metagenomic projects is 
currently protein annotation from open reading frames (ORFs) in 
metagenomic assemblies. While assembly of metagenomic shotgun 
data is challenging, there are assemblers such as SOAP de novo that can 
be used for this purpose (e.g. [34]). mBLAST enables annotation of the 
millions of ORFs resulting from the metagenomic assemblies within 
days with a very high level of sensitivity. 

Discussion
Current short read sequencing platforms produce enormous 

amounts of sequencing data, and these amounts have been increasing 
exponentially over the past few years. This has introduced new 
challenges in data analysis in terms of the computational resources and 
algorithms that are available. Alignment to known and characterized 
sequences is an important component of analysis and NCBI’s BLAST 
suite of algorithms, originally developed decades ago, is still considered 
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Figure 7: Metagenomic shotgun reads from 20 blood plasma samples from febrile children were aligned to viral reference genomes at the nucleotide sequence 
level and compared to translated alignments generated using mBLASTX and mTBLASTX. (A)Translated alignments improve detection of ssDNA and ssRNA 
viruses in metagenomic samples. (B-E) Examples from 4 plasma samples, from febrile children and the detected Anelloviruses (ssDNA genomes), enteroviruses 
(+ssRNA genomes), erythroviruses (ssDNA genomes), and dependoviruses (ssDNA genomes). The numbers of viral sequences detected by each alignment 
method are shown.
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the gold standard in alignment in terms of its sensitivity. In this study 
we have shown that there is still room for improvement of these 
legacy algorithms and have achieved a speed-up sufficient to deliver 
the performance necessary for current sequencing platforms while 
retaining a high level of sensitivity.

Application of mBLAST to human microbiome data

The importance of being able to do BLAST alignments for huge 
metagenomic datasets in a timely manner cannot be overstated. The 
HMP produces two types of metagenomic shotgun data, sequences 
originating from reference genomes and from metagenomic 
communities. The advantages of the shotgun sequences originating 
from metagenomic communities compared to the community profiling 
using 16S rRNA gene are the ability to identify the presence of non-
bacterial members (such as viruses and lower eukaryotes) and estimate 
the genetic potential and metabolic capabilities of the communities, 
among others. While ideally the metabolic profiling of the community 
should be done at a gene level, after assembly and gene calling, the 
metagenomic assembly is still very challenging [34]. However, read 
lengths of 100 nucleotides combined with the mBLAST programs make 
read level protein BLAST searches feasible. 

Analysis of large amounts of sequences is a challenge that nearly every 
project using NGS faces routinely. For HMP, the analysis of 631 samples 
with approximately 5 GB of data (50 million nucleotide reads of length 
100 bp) per sample (Table 3), a total of 3.5 terabases of clean (human 
free) microbial data, using BLASTX was a significant computational 
challenge. The necessary BLASTX analysis involved several different 
protein databases to answer many different biological questions. If one 
used a cluster of 200 constantly running machines with dual socket 
quad-Nehalem cores and 48 GB memory (large machine, Table 3), 
it would have taken approximately 4.4 years (Table 3) to process this 
analysis or, alternatively, approximately $25 million dollars (in runtime 
on the current EC2 Amazon cluster using NCBI BLASTX based on 
web-advertised pricing (http://aws.amazon.com/ec2/pricing/). Neither 
of these options is viable, but with the development of mBLAST, this 
analysis is now tractable. The CPU version of mBLASTX, with 1,600X 
performance and over 98% sensitivity was used to align 3.5 terabases of 
microbial data against different functional protein databases. The use of 
mBLAST enabled the completion of the analysis of this data in about 4 
weeks of processing time, mixed in with various other compute loads. 

One of the primary aims in speeding up performance of TBLASTX 
in shotgun metagenomic projects is to identify novel viruses in a 
reasonable time frame. Virus detection pipelines includes two major 
steps [22], the first being the identification of known viruses using 
nucleotide level searches and the second one being the identification 
of distantly related homologies and novel viruses by TBLASTX. The 
second step is particularly useful for viruses with high sequence 
diversity, such as those with ssDNA and ssRNA genomes. For example, 
some anellovirus isolates have been shown to have up to 60% divergence 
at the amino acid level within ORF 1 [35]. Thus, a comprehensive 
analysis of the viral component of the microbiome requires the ability 
to carry out rapid and relatively sensitive translated alignments against 
viral reference genomes. In cases like this TBLASTX is preferred over 
BLASTX because it enables us to query a more comprehensive set 
of sequences, increasing the sensitivity and accuracy of the results. 
TBLASTX is more sensitive for virus detection and discovery because 
it translates a set of nucleotide references into six protein frames 
before alignment, allowing metagenomic sequences to be compared 

to all possible protein coding sequences and not just those that are 
easily predicted or deposited in public databases like NR. Accuracy 
is improved because the best alignment from a more comprehensive 
database is reported. For example, remote similarities to viral proteins 
may be detected when using BLASTX to align to NR, but the same 
sequences may have stronger alignments to another reference (such as 
the human genome) that can be detected using TBLASTX to query a 
nucleotide database like NT. Thus, a comprehensive analysis of the viral 
component of the microbiome requires the ability to carry out rapid 
and relatively sensitive translated alignments against viral reference 
genomes. Despite these very significant advantages, TBLASTX is 
rarely used in practice because it requires such an immense CPU time 
requirement (usually at least 6 fold that of BLASTX)so to complete such 
searches in a reasonable time frame (Table 3) accelerated algorithms 
such as mTBLASTX are essential. 

Finally, BLASTP acceleration has compelling applications in the 
annotation of large metagenomic assemblies. For example, in the 
HMP [36] assemblies were generated using an optimized SOAP de 
novo [37] protocol with parameters designed to achieve an assembly 
containing sufficiently large contigs for downstream analyses such as 
gene and function prediction. Annotation of the resulting 41 million 
contigs resulted in a total of 66,551,726 predicted peptide ORFs using 
Metagene Mark [38]. Functional annotation of the ORF was done on 
primary amino acid sequence identity level using mBLASP against the 
UniRef 100 [26] within a small (<1/500) fraction of the time needed if 
BLASTP was used (Table 3). 

Summary
In metagenomics, the number of queries that require protein 

BLAST searches against different databases continues to increase as 
sequencing technologies evolve, and the databases continue to grow. 
Advances in computer speed are no longer sufficient to keep pace 
with this growth, thus new and/or improved software tools must be 
developed. The approach and the improvements implemented in the 
mBLAST algorithms enabled more than a thousand fold speed up 
with only marginal loss in sensitivity, regaining BLAST algorithms as a 
workable tool for metagenomic analysis.

For future development, we believe that further software 
optimization yielding gains similar to those presented here will prove 
more and more challenging. Hardware-based solutions such as a 
version of BLAST optimized for Graphics Processor Units (GPUs) 
are another possibility. Although beyond the scope of this study, we 
also made preliminary investigations into using GPUs to accelerate an 
advanced seed finding step for BLAST. Seed finding is the dominant 
part of the BLAST search process, constituting approximately 85% of 
the total time prior to the mBLAST optimizations. It was relatively 
straightforward to achieve a 10X speedup with the GPU (compared 
to CPU only mBLASTX) using either NVIDIA or AMD GPUs for 
this step. However, with the increased speed over mBLAST, disk I/O 
became a bottleneck and only a net 1.4X was achieved in the complete 
execution. The GPU version of the algorithm was also evaluated on a 
GPU cluster housed at the University of Illinois (Lincoln, TERAGRID, 
[39]) resulting in the same 1.4x performance gain as on a stand-alone 
server with a local NVIDIA Tesla card (C1060, DELL)). With advanced 
SSD drives and additional optimizations targeting the I/O bottleneck, 
indicate that additional, significant speedup should be possible in 
a future implementation of mBLAST using GPUs (unpublished 
observations). 
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This study demonstrated that proven, legacy algorithms that have 
previously been highly optimized for different search scenarios can  still 
be very substantially improved to meet the needs of newer sequencing 
technologies.

Data Availability
The sequence data from this study have been submitted to the 
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The assembly scaffolds are available under accession no. SRS013215. 
The samples for virus detection are available under accession no. 
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SRR057831, SRR057939, SRR057832. 
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