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Introduction
Generalized linear mixed models (GLMM) have been widely used 

in modeling longitudinal data where the response can be either discrete 
or continuous. Various estimation methods for GLMM have been 
developed in the literature [1,2,3]. However, estimation and inference 
in a GLMM remain very challenging when some of the covariates are 
not directly observed but are measured with error.

Measurement error is a common problem in medical and clinical 
research. For example, in epidemiologic studies time-varying covariates 
such as dietary intakes or other exposure variables are subject to 
measurement error; in HIV trials, the viral load and CD4+ cell counts 
are often mismeasured. It is well-known that simply substituting a 
proxy variable for the unobserved covariate in the model will generally 
lead to biased and inconsistent estimates of regression coefficients and 
variance components [4-6]. To account for the measurement error as 
well as the correlation in the longitudinal data, Wang et al. [5] proposed 
the simulation extrapolation (SIMEX) method to correct for the bias of 
the naive penalized quasi-likelihood estimator in a generalized linear 
mixed model with measurement error (GLMMeM), while Wang et 
al. [7], and Bartlett et al. [8] proposed a regression calibration (RC) 
approach. Although both RC and SIMEX approaches are practical 
and may produce satisfactory results when the measurement errors 
are small, it is known that in general they yield approximate but 
inconsistent estimators. Tosteson et al. [9] proposed a bias-corrected 
estimator but it was shown to be highly inefficient. Buonaccorsi et 
al. [10] proposed the likelihood based methods and Zhong et al. [11] 
studied the corrected score approach. However, the likelihood methods 
typically entail computation difficulties due to the multiple integrals 
and intractability of the likelihood function. Consequently, one usually 
relies on normality assumption for random effects, measurement error 
and residual error terms. Non- or semi-parametric approaches have 
also been considered for models with normal ME [12,13].

Instrumental variable (IV) method has been used by many 
researchers to overcome measurement error problems in cross-
sectional data [6,14-17]. In practice, any variables correlated with 
the error-prone true covariates can serve as valid IV, e.g., a second 
independently measurement. Furthermore, the assumption of 

instrumental variable is weaker than that of replicate data because IV 
can be a biased observation for the true covariates [6,18].

In this paper, we propose an exact consistent estimation method 
for GLMMeM based on the methods of moments and instrumental 
variables. This method is easy to implement when the closed form of 
the moments exist. For the case where the marginal moments do not 
admit analytic forms, we propose simulation-based estimators (SBE). 
In particular, we use the simulation-by-parts technique of Wang 
[19] to construct the SBE to ensure its consistency even using finite
number of simulated random points. The proposed estimators are
root-n consistent and do not require the parametric assumptions for
the distributions of the unobserved covariates or of the measurement
errors. Further, the proposed estimators have bounded influence
functions so they are robust to data outliers.

The structure of the paper is as follows. In Section 2, we introduce 
the model and the proposed moments estimator. In Section 3, we 
construct the simulation-based estimator. In Section 4 we present 
simulation studies of finite sample performances of the proposed 
estimators. Finally, conclusions and discussion are contained in Section 
5, whereas theoretical proofs of the theorems are given in Section 6.

The Model and Estimation
Consider the following generalized linear mixed model with 

measurement error (GLMMeM) 

( )1 ( | , ) = ' ' ' , = 1, , , = 1, ,β β− + +  ij i ij ij x ij z ij i ig E y b X X Z B b i N j n   (1)

( | , ) = ( ( ' ' ' ))φν β β+ +ij i ij ij x ij z ij iV y b X g X Z B b    (2)

Where yij ∈ IR is the jth response for the ith unit; bi ∈ IRq is the 
random effect having mean zero and distribution fb (t; θ) with 
unknown parameters q ∈ pbIR ; β ∈ px

x IR  and β ∈ pz
z IR  are vectors of 

*Corresponding author:  Liqun Wang, Department of Statistics, University of 
Manitoba, Winnipeg, Manitoba, Canada R3T 2N2, Tel: (204) 474-6270; Fax: (204) 
474-7621; E-mail: liqun_wang@umanitoba.ca

Received March 20, 2012; Accepted April 12, 2012; Published April 13, 2012

Citation: Li H, Wang L (2012) Consistent Estimation in Generalized Linear Mixed 
Models with Measurement Error. J Biomet Biostat S7:007. doi:10.4172/2155-6180.
S7-007

Copyright: © 2012 Li H, et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Consistent Estimation in Generalized Linear Mixed Models with 
Measurement Error
He Li and Liqun Wang*
Department of Statistics, University of Manitoba, Canada

Abstract
We propose the instrumental variable method for consistent estimation of generalized linear mixed models with 

measurement error. This method does not require parametric assumptions for the distributions of the unobserved 
covariates or of the measurement errors, and it allows random effects to have any parametric distributions (not 
necessarily normal). We also propose simulation-based estimators for the situation where the marginal moments do not 
have closed forms. The proposed estimators are not only computationally attractive but also strongly root-n consistent. 
Moreover, the proposed estimators have a bounded influence function so they are robust against data outliers. The 
methodology is illustrated through simulation studies.
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{ ( ( ; ) ) ' ' } ( ; ) ( ; ) ,ϕ φ ν g β β q α′ + + + ∫jk ij x ij z ij b Ug m V u Z B t f t f u dtdu

and 

k3,ijk(ψ) = E(yijWik  | Vi)                                       (8)

= E(yijXik | Vi) 

= E [XikE(yij | bi, Xi) | Vi] 

= ( ( ; ) ) ( ( ; ) ) ' ' ( ; ) ( ; ) ,g g β β q α′ + + + + ∫ ik ij x ij z ij b Um V u g m V u Z B t f t f u dtdu

where φjk = 1 if j = k and zero otherwise. In the following we consider 
three popular GLMMeM examples.

Example 2.1: Consider a linear mixed model with continuous 
responses and an identity link function g (-). Assuming Uij has mean 
zero and variance matrix αI, and bi has mean zero and covariance 
matrix Σb, we have the explicit form of the moments 

1, ( ) = ( ; ) ' ,κ ψ g β β′ +ij ij x ij zm V Z

2, 1, 1,( ) = ( ) ( ) ,κ ψ κ ψ κ ψ ϕ αβ β ϕ φ′ ′+ Σ + +ijk ij ik ij b ik jk x x jkB B  

k3,ijk(ψ) = k1,ij (ψ)m(Vik;γ) + φjkαβx 

It is worth noting that no distributional assumptions are required 
for Uij and bi to obtain these moments.

Example 2.2: Consider a random intercept mixed Poisson model 
for counts, where logE(yij|bi,Zi,Xi,Bi) = β0 + βxxij +βzzi + βxzxijzi +bi and 
ϕ = 1; xij, zi and bi are scalars. Assuming bi : N(0, q) and uij : N(0,αI), we 
can derive the explicit forms of the moments as 

( )2 2 2
1, 0( ) = exp ( ) ( ; ) ( ) / 2 / 2 ,κ ψ β β β g β β α β q+ + + + + +ij x xz i ij x xz i z iz m v z z   

( )2 2 2
2, 1, 1, 1,( ) = ( ) ( ) exp ( ) ( ),κ ψ κ ψ κ ψ β β α q ϕ κ ψ+ + +ijk ij ik x xz i jk ijz  

3, 1, 1,( ) = ( ; ) ( ) ( ) ( ).κ ψ g κ ψ ϕ β β ακ ψ+ +ijk ik ij jk x xz i ijm v z  

 Example 2.3: Consider a mixed logistic model for a binary 
response yij, where ϕ = 1 and g (-) is the logistic distribution function. 
For this model we find 

( )1, ( ) = ( ; ) ' ' ( ; ) ( ; ) ,κ ψ g β β q α′ + +∫ij ij x ij z ij b Ug m V Z B t f t f u dtdu

( )2, ( ) = ( ; ) ' 'κ ψ g β β′ + +∫ijk ij x ij z ijg m V Z B t  

              ( )( ; ) ' ' ( ; ) ( ; ) ,g β β q α′ + +ik x ik z ik b Ug m V Z B t f t f u dtdu

3, ( ) = ( ( ; ) )κ ψ g +∫ijk ikm V u

         ( )( ( ; ) ) ' ' ( ; ) ( ; ) .g β β q α′+ + +ij x ij z ij b Ug m V u Z B t f t f u dtdu

The above integrals are intractable but can be approximated using 
Monte Carlo simulators. This case will be treated in the next section. 

Since γ is of secondary interest, it is treated as a nuisance parameter 
and is estimated by nonlinear least squares (NLS) method based on 
equation (5) as 

=1

ˆ = ( ) = '( ) ( ),a a
g gg g

g g g g
∈Ω ∈Ω

Ψ ∑
N

N N i i
i

r rrgmin rgmin                                   (9)

where '( ) = ( ( ; ),1 )g g− ≤ ≤i ij ij ir W m V j n . Under standard regularity 

conditions, 1/2
0ˆ = ( ).g g −−N pO N  Then we replace γ in (6)-(8) by its least 

squares estimator ĝ N  and denote the moments as 1, 2,ˆ ˆ, ,κ κij ijk  and 3,κ̂ ijk 

3,κ̂ ijk  correspondingly. Throughout the paper, we denote the parameter 
space of a parameter vector, say ψ, by Ωψ. In particular, the parameter 
spaces of βx and βz are denoted as Ωx and Ωz respectively. Then the 

fixed effects; g-1(-) is a link function; v(-) is a known variance function 
and ϕ ∈ IR is a scalar parameter that may be known or unknown. It 
is assumed that yij given bi are independent. Note that the estimation 
methods in this paper do not require the conditional distribution of 

yij given bi to belong to an exponential family. Further, ∈ pz
ijZ IR and 

∈ q
ijB IR  are known predictors observed without error; and ∈ px

ijX IR  
is unobservable. Instead one observes 

Wij = Xij + dij,                       (3)

where dij is the vector of measurement errors.

Model (1) - (2) has been studied by various authors, e.g. Wang 
et al. [5]; Buonaccorsi et al. [10]; Zhong et al. [11]; Carroll et al. [6]. 
It is known that the parameters of the classical ME models generally 
require extra information in order to be identified [6,16]. Moreover, 
even if certain ME models are identifiable, additional information 
is useful to improve the efficiency of estimation [20]. The common 
source of additional data includes replicate measurements, validation 
data, instrumental variables, or knowledge of the measurement error 
distributions. Here we assume that one observes a set of instrumental 
variables ∈ pV

ijV IR  that is related to the error-prone predictor Xij 
through 

Xij = m(Vij ; g) + Uij,                  (4)

Where m(-) is a known function, g ∈ pvIR is a vector of unknown 
parameters, ∈ px

ijU IR  is independent of Vij and has mean zero and 
distribution fU (u;α) with unknown parameters α ∈ puIR . Further, we 
assume that the ME δij is independent of Xij, Vij and yij, E(yij | Xij,bi) 
= E(yij | Xij, Vij, bi) and E(yij yik | Xij,bi) = E(yij yik | Xij, Vij, bi) where j ≤ 
k. Following the convention of mixed modeling literature, throughout 
this paper all expectations are taken conditional on Bi and Zi implicitly. 
There are no assumption on the functional forms of the distributions of 
Xij and δij. In this model, the observed variables are  ( , ', ', ', ')′ij ij ij ij ijy W V Z B  
and the parameter of interest is = ( , , , , )ψ β β q α φ′ ′ ′ ′ ′x z .

To estimate all unknown parameters in the model, we first note 
that substituting (4) into (3) results in a usual regression equation 

E(Wij | Vij) = m(Vij; γ)                        (5)

which can be used to obtain consistent estimator for γ by least squares 
method. In practice, γ can be pre-estimated using an external sample 
or a subset of the main sample. We denote 1 2= ( , , , )′ ′ ′ ′

i i i ini
X X X X , and 

denote Wi, Vi, Zi, Bi and Yi analogously. By model assumptions and the 
law of iterated expectation, we have the following moments 

k1,ij(ψ) = E(yij |Vi)                       (6)

=E [ E(yij | bi, Xi, Vi) | Vi] 

=E [ E(yij | bi, Xi) | Vi] 

= ( ' ' ' ) |β β + + ij x ij z ij i iE g X Z B b V   

= ( ( ; ) ) ' ' ( ; ) ( ; ) ,g β β q α′ + + + ∫ ij x ij z ij b Ug m V u Z B t f t f u dtdu

and, similarly, 

k2,ijk(ψ) = E(yijyik | Vi)                                       (7)

=E [ E(yij | bi, Xi,) E | E(yik | bi, Xi) | Vi] 

= ( ( ; ) ) ' 'g β β′ + + + × ∫ ij x ij z ijg m V u Z B t

[ ]( ( ; ) ) ' ' ( ; ) ( ; )g β β q α′+ + + +ik x ik z ik b Ug m V u Z B t f t f u dtdu
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method of moments estimator (MME) for ψ is defined as 

=1

ˆ ˆ ˆ= ( ) = ( ) ( ),a a
ψ ψψ ψ

ψ ψ ρ ψ ρ ψ′
∈Ω ∈Ω

∑
N

N N i i i
i

Q Argmin rgmin                 (10)

where 1, 2, 3,ˆ ˆ ˆ ˆ( ) = ( ( ), ( ), ( ))ρ ψ κ ψ κ ψ κ ψ′ − − −i ij ij ij ik ijk ij ik ijky y y y W  and Ai = A(Vi) is 
a nonnegative definite matrix that may depend on Vi.

To derive the consistency and asymptotic normality of ψ̂ N , we 
make the following assumptions.

Assumption 1: g (-) and v (-) are continuously differentiable; 
m(v; -) is a Lebegue measurable function of v and is continuously 
differentiable with respect to γ. 

Assumption 2: (yi,Wi,Vi,Zi,Bi,ni), i=1,…,N, are in-

dependent and identically distributed and satisfy 

( )24 1 < + + ∞  i ij ij ijE A y y W ; Further, there exists a positive func-

tion G(v,t,u) satisfying ( )2
( , , )( ( , ) 1) <g + + ∞  ∫E A G V t u m V u dtdu

, such that 2 ( ( , ) ) ' ' ( ; ) ( ; )g β β q α′ + + + x ij z ij b Ug m v u Z B t f t f u  and 

{ }( ( , ) ) ' ' ( ; ) ( ; )ν g β β q α′ + + + x ij z ij b Ug m v u Z B t f t f u  are bounded by G(v,t,u). 

Assumption 3: The parameter space   is compact. 

Assumption 4: 0 0[ ( ) ( )] [ ( ) ( )] = 0ρ ψ ρ ψ ρ ψ ρ ψ′− −i i i i iE A  if and only 
if ψ = ψ0. 

Assumption 5: g (-)and v (-) are twice continuously differentiable; 
fb(t; θ) and fU(u;α) are twice continuously differentiable w.r.t 
to θ and α respectively in some open subsets θ0∈ Ωθ0⊂ Ωθ and 
α∈ Ωα0∈ Ωα. Furthermore, all first and second order partial 
derivatives of ( ( , ) ) ' ' ( ; ) ( ; )g β β q α′ + + + ij x ij z ij b Ug m V u Z B t f t f u  and 

{ }( ( , ) ) ' ' ( ; ) ( ; )ν g β β q α′ + + + ij x ij z ij b Ug m V u Z B t f t f u  w.r.t (ψ,γ) are bounded 
absolutely by the positive function G(v,t,u) given in Assumption 2. 

Assumption 6: The matrices 

0 0( ) ( )= ,ψ
ρ ψ ρ ψ

ψ ψ
′∂ ∂ 

 ′∂ ∂ 
i i

iD E A                  (11)

0 0( ) ( )=g
g g
g g

′∂ ∂ 
 ′∂ ∂ 

i ir rD E                  (12)

are nonsingular. 

Theorem 1: As N→∞, 

 1. under assumptions 1-4, 
. .

0ψ̂ ψ→
a s

N ;

 2. under assumptions 1-6, 1 1
0ˆ( ) (0, )ψ ψψ ψ − −− →

L

NN N D CD , where 

C =E(C1C1)                      (13)

10
1 0

( ) ( )= ( ) ( )ψg g
ρ ψ gρ ψ g

ψ g
−′ ′∂ ∂

+
∂ ∂
i i

i i i
rC A D D r                 (14)

0 0( ) ( )=ψg
ρ ψ ρ ψ

ψ g
′∂ ∂ 

 ′∂ ∂ 
i i

iD E A                  (15)

 The second term in equation (14) is the correction term due to 
the first-step estimation of γ. If γ0 is known or estimated using an 
independent sample from the main sample, then this term vanishes 
and the most efficient weight is given by 1

0 0= [ ( ) ( ) | ]ρ ψ ρ ψ −
′

opt
i i i iA E V  

[21]. In practice, direct calculation of opt
iA  is not feasible since it 

involves unknown parameters to be estimated. One possible solution 
is using a two-stage procedure. First, minimize ( )ψNQ  using Ai = I 
to obtain the first stage estimator 1ψ̂ N . Second, estimate opt

iA  by any 
nonparametric method or 

1

1 1
=1

1 ˆ ˆ= ( ) ' ( ) ,ρ ψ ρ ψ
−

 
 
 

∑
N

opt
i i N i N

i
A

N                    (16)

and minimizing ( )ψNQ  again using opt
iA  to obtain the second stage 

estimator 2ψ̂ N . In practice, the calculation of opt
iA may be difficult 

or inaccurate due to its high dimension, so one may consider using 
certain diagonal weight matrix. A detailed discussion on the choice of  

opt
iA can be found in Li and Wang (2011).

In general, MME can be computed using Newton-Raphson 
algorithm as 

12 ( ) ( )
( 1) ( ) ˆ ˆ( ) ( )ˆ ˆ= ,

τ τ
τ τ ψ ψψ ψ

ψ ψ ψ

−

+  ∂ ∂
−  ′∂ ∂ ∂ 

N NQ Q

where ( )ˆ τψ   denotes the estimate of ψ at the τth iteration, 
( ) ( )

( )

=1

ˆ ˆ( ) ( ) ˆ= 2 ( ),
τ τ

τψ ρ ψ ρ ψ
ψ ψ

′∂ ∂
∂ ∂∑

N
N i

i i
i

Q A                    (17)

2 ( ) ( ) ( ) ( )

=1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ( ) / )ˆ= 2 ( ( ) ) .
τ τ τ τ

τψ ρ ψ ρ ψ ρ ψ ψρ ψ
ψ ψ ψ ψ ψ

′ ′
′

 ∂ ∂ ∂ ∂ ∂ ∂
+ ⊗ ′ ′ ′∂ ∂ ∂ ∂ ∂ 

∑
N

N i i i
i i i

i

Q vecA A I

                   (18)

Since the second term in (18) has expectation zero, it can be ignored 
for computational simplicity.

When using the weight (16), the MME is able to safeguard against 
influential measurements. In particular, the influence function (IF) at a 
single contaminated data point v for subject l takes the form 

1 ˆ ˆ( ; ( ))ˆ ˆ ˆ ˆ ˆ( ; , ) = ( ( )) ( ; ( )) ( ; ( )),ψ
ρ ψψ ψ ψ ρ ψ

ψ
− ′∂

−
∂

l N
N N l N l N

v FIF v F D F A v F v F   
                   (19)

where F is the underlying distribution and Dψ is given in (11). If ψ̂ N  
is computed using the estimated weight (16), then analogous to Li and 
Wang [22] we can prove that ˆ( ; , ) 0ψ →NIF v F  as → ∞v . Therefore, 
the influence function of  ψ̂ N  is bounded and ψ̂ N  has a redescending 
property, so it is robust to influential observations or outliers.

Simulation-Based Estimator 
The numerical computation of MME ψ̂ N  is straightforward if the 

moments in (6)-(8) admit explicit forms. However, sometimes the 
integrals involved in these moments are intractable. In this case, we 
propose a simulation-based approach. The basic idea is to replace the 
integrals with their Monte Carlo simulators as follows. First, generate 
random points tis and uis,i = 1,2,…,N; s = 1,2,…,2S; from known 
densities l(t) and h(u). Then use the first half of the points tis and uis,s 
= 1,2,…,S to compute 

1
1,

=1

( ; ) ( ; )1( ) = ( ( ; ) ) ' '
( ) ( )
q ακ ψ g β β′ + + + ∑

S
b is U is

ij ij is x ij z ij is
s is is

f t f ug m V u Z B t
S l t h u   

                   (20)
1
2,

=1

1( ) = ( ( ; ) ) ' 'κ ψ g β β′ + + + ∑
S

ijk ij is x ij z ij is
s

g m V u Z B t
S

[ ] ( ; ) ( ; )( ( ; ) ) ' '
( ) ( )
q αg β β′+ + + b is U is

ik is x ik z ik is
is is

f t f ug m V u Z B t
l t h u

       

( )
=1

( ; ) ( ; )1 ( ( ; ) ) ' '
( ) ( )
q αϕ φ ν g β β′ + + + + ∑

S
b is U is

jk ij is x ij z ij is
s is is

f t f ug m V u Z B t
S l t h u  

                 (21)
1
3,

=1

1( ) = ( ( ; ) )κ ψ g +∑
S

ijk ik is
s

m V u g
S                

   
( ; ) ( ; )( ( ; ) ) ' '

( ) ( )
q αg β β′ + + + 

b is U is
ij is x ij z ij is

is is

f t f um V u Z B t
l t h u

(22)

and similarly use the second half of the points tis and uis,s = S+1,S+2,…
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,2S and to compute 2
1, ( )κ ψij , 2

2, ( )κ ψijk  and 2
3, ( )κ ψijk . It is easy to see 

that 1, ( )ικ ψij , 2, ( )ικ ψijk  and 3, ( )ικ ψijk , ι  = 1,2 are unbiased estimators for 
1, ( )κ ψij , 2, ( )κ ψijk  and 3, ( )κ ψijk  respectively. Finally, the simulation-based 

estimator (SBE) for ψ is defined as 

, , ,1 ,2
=1

ˆ ˆ ˆ= ( ) = '( ) ( ),a a
ψ ψψ ψ

ψ ψ ρ ψ ρ ψ
∈Ω ∈Ω

∑
N

N S N S i i i
i

Q Argmin rgmin              (23)

where , 1, 2, 3,ˆ ˆ ˆ ˆ( ) = ( ( ), ( ), ( ))ι ι ι
ιρ ψ κ ψ κ ψ κ ψ ′− − −i ij ij ij ik ijk ij ik ijky y y y W . We re-

fer this simulation technique as simulation-by-parts since ,1ˆ ( )ρ ψi  and  
,2ˆ ( )ρ ψi  are constructed by using two independent sets of random 

points. The benefit of simulation by parts is that ,1ˆ ( )ρ ψi   and ,2ˆ ( )ρ ψi  
are conditionally independent given (Yi,Wi,Vi,Zi,Bi) so that , ( )ψN SQ  is 
an unbiased simulator for ( )ψNQ  for finite S. It is worth noting that 
the construction of simulated moments only requires bi and Uij to have 
certain known parametric forms (not necessary normal). For example, 
one can follow Davidian and Gallant [23] and Zhang and Davidian [24] 
to represent the density of bi and Uij by the standard seminonparamet-
ric density which includes normal, skewed, multi-modal, fat- or thin-
tailed densities. One can also impose the Tukey (g,h) family distribu-
tion [25] for bi as well which is generated by a single transformation of 
the standard normal and covers a variety of distributions.

Theorem 2: Suppose that Supp(l) ⊇ Supp(fb(.; θ)) for all θ ∈ Ωθ0, 
and Supp(h) ⊇ Supp(fU(.; α)) for all α ∈ Ωα0. Then for any fixed S > 0, 
as N→∞,

1. under assumptions 1-4, 
. .

, 0ψ̂ ψ→
a s

N S ;

2. under assumptions 1-6, 1 1
, 0ˆ( ) (0, )ψ ψψ ψ − −− →

L

N S SN N D C D , where 

( )1 1= ,′S S SC E C C                     (24)
,1 0 ,2 0 1

1 ,2 0 ,1 0

'( ) '( ) ( )2 = ( ) ( ) 2 ( )ψg g

ρ ψ ρ ψ gρ ψ ρ ψ g
ψ ψ g

− ′∂ ∂ ∂
+ +

∂ ∂ ∂
i i i

S i i i i i
rC A A D D r  (25)

Note that the above asymptotic results do not require the simulation 
size S tends to infinity because we use the simulation-by-parts technique 
to approximate moments. This is fundamentally different from other 
simulation-based methods in the literature which typically require S 
goes to infinity to obtain consistent estimators. However, due to the 
approximation of marginal moments, ,ψ̂ N S  is generally less efficient 
than ψ̂ N . In general, analogous to the Corollary 4 in Wang [19] we 
can show that the efficiency loss caused by simulation decreases at the 
rate O (1/S).

Monte Carlo Simulation Studies
In this section, we evaluate the finite sample behavior of the 

proposed estimators, and compare them with the naive maximum 
likelihood estimates that ignores measurement error. We carried out   
Monte Carlo replications in each simulation study and reported the 
biases and the root mean square errors (RMSE). All computations are 
done in R [26] and the naive ML estimates are obtained from glmmPQL 
package.

still provides a better estimate in terms of biases and RMSE which may 
because zi interacts with xij. The naive MLE for βz is also biased towards 
zero. However, with the increase of sample sizes, the biases and RMSE 
reduces for the naive MLE as well as the MME. For the random effect θ, 
surprisingly both estimators provide quite satisfactory estimators with 
no apparent biases.

In the second simulation study, we considered a logistic model for 
binary responses. In particular, we adopted the following model used 
in the simulation studies by Wang et al. [5]: 

logit(Pr(yij = 1| bi,xij, zij)) = β0 + βxxij + βzzij + bi                 (26)

where bi ~ N(0,0.5), zij ~ N(0,1), and δij ~ N(0,1). In addition, we 
assumed an IV variable is observed that relates to xij though xij = 1.5 
+ 0.5vij +uij, vij : N(0,1) and uij : N(0,0.5). In the present simulation, 
we selected N = 50,100 and n = 3. The closed form of the marginal 
moments are not available so we applied the SBE in this case. To 
compute the SBE, we chose the density of N(0,2) to be h(u) and l(t), 
and generated independent points uis and tis, s = 1,…,2S, using S = 1000. 
The simulation results are presented in Table 2. For the fixed effects 
associated with ME, β0 and βx, SBE is almost unbiased while the naive 
ML is severely downward biased and attenuated towards zero. With 
the increase of sample size from N = 50 to 100, the RMSE and biases of 
MME are decreasing while the ones from the naive ML stay almost the 
same. This is the same findings as the ones in the first simulation study. 
For exactly measured effect βz, both estimates seem to be unbiased; 
however, the naive ML provides a better estimates in terms of smaller 
biases and RMSE. With the increase of sample size, the RMSE and 
biases from both methods are decreasing. For the random effect, the 
naive ML overestimates θ with larger biases as well as RMSE. With 
the increase of sample size, both estimators lead to smaller biases and 
RMSE.

In the third simulation study, we considered the linear mixed 
model in Example 2.1 with N = 100,300 and n = 4. We simulated ϕ,vij, 
and uij independently from a standard normal distribution and set xij= 
0.2+1.4 vij+ uij. The random effect was generated from either a normal 
distribution or a t(3) distribution. Table 3 reports the simulation 
results. For β0 and βx, the MME is almost unbiased while the naive MLE 
is severely biased. The MME has much smaller RMSE than MLE. With 
the increase of sample size from N = 100 to 300 to, the RMSE and biases 
of MME are decreasing while the ones from the naive MLE stay almost 
the same. The performance of MME and MLE for fixed effects under 
normal random effects and non-normal random effects are very similar. 
For the random effect θ, both estimators provide quite satisfactory 
estimators with no apparent biases. However, the RMSE from naive 
MLE increased significantly when the random effects were shifted from 
normal to t(3). For the residual error variance ϕ, naive MLE produces 
huge bias while MME stays unbias. These findings demonstrated that 

   N = 100  N = 300
  Parameter  Naive MLE  MME  Naive MLE  MME 
β0 = 1.00 1.37 (1.39)  -0.22 (0.27)  1.38 (1.38)  -0.20 (0.23) 
βx = 1.00 -0.79 (0.79)  -0.05 (0.08)  -0.79 (0.79)  -0.07 (0.08) 
βz = -0.50 0.38 (0.47)  0.06 (0.17)  0.36 (0.40)  0.05 (0.16) 
βxz = 0.25  -0.20 (0.22)  -0.01 (0.10)  -0.19 (0.20)  -0.02 (0.08) 
θ = 1.00  -0.03 (0.21)  -0.04 (0.19)  0.03 (0.28)  -0.05 (0.15) 

Table  1: Biases(RMSE) for the parameter estimates in the random intercept Pois-
son models.

In the first simulation study, we considered the mixed Poisson 
model in Example 2.2. We simulated δij from N(0,1), set zi = 1 for half 
the sample and 0 for the remainder, and set N = 100,300 and n = 4. In 
addition, we set xij = 1.5 + 0.5vij + uij, vij ~ N(0,1), and uij ~ N(0,0.25). 
Table 1 reports the simulation results. For the fixed effects associated 
with ME,β0, βx and βxz, the MME is almost unbiased while the naive 
MLE is severely downward biased and attenuated towards zero. The 
MME is considerably more efficient than the naive MLE in terms of 
smaller RMSE. With the increase of sample size from N = 100 to 300, the 
RMSE and biases of MME are decreasing while the ones from the naive 
MLE stay almost the same. For exactly measured effect βz, the MME 
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Concluding Remarks
We proposed consistent estimators for the generalized linear mixed 

models with errors in variables. These estimators are constructed by 
combining the method of instrumental variables and the method 
of moments. The strong consistency and asymptotic normality of 
the estimators are obtained under mild regularity conditions. The 
proposed approach does not require the parametric assumptions 
for the distributions of the unobserved covariates or the normality 
assumption for the random effects. In the simulation studies the 
proposed estimators perform well in finite sample situations.

In comparison with the regression calibration and simulation 
extrapolation [5,7], the proposed method is exactly consistent and 
computationally less intensive. It is therefore more reliable even 
if the measurement errors are large. Moreover, the instrumental 
data is usually less expensive to collect than validation data which is 
generally required by the regression calibration method. Unlike the 
likelihood-based method [10], the proposed method does not rely 
on normality distributional assumptions on the random effects or 
unobserved covariates and is easier to compute. As noted in Carroll 
and Stefanski [18], the assumption for an instrumental variable is 
weaker than a replicate for the error-prone true variable. In general, 
if the assumption of replicate cannot be verified, one may wish to 
investigate the applicability of using it as an instrumental variable. 
Therefore, the proposed method is less restrictive than the ones relying 
on replicates. A special case of measurement error is that the true 
unobserved covariate is known to be time-invariant (i.e., Xij = Xi) but 
its surrogate Wij is measured over time. In this case, Wij can be used 
as the instruments for Xi and hence no extra data is required for the 
model identification and estimation. The proposed estimators can 
also be extended to the case of the generalized linear mixed models 
with Berkson measurement error. However, the use of instrumental 
variable is not necessary because the model is identifiable by using the 
first two moments (i.e., equation (6) and equation (7)). The proof is 
straightforward by following Wang [27].

Theoretical proofs

Proof of Theorem 1.1

By assumption 1 and the Dominated Convergence Theorem 

(DCT), we have the first-order Taylor expansion about γ0. 

0
=1 =1

( , ) ˆ( ) = ( ) ( ) 2 ( , ) ( ),ρ ψ gψ ρ ψ ρ ψ ρ ψ g g g
g′ ′

∂
+ −
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i

N i i i i i N
i i

Q A A                 (27)

where 0 0ˆg g g g− ≤ − N . Further, for any 1≤ ≤i N , by assumptions 1-3 

and Cauchy-Schwartz inequality, we have 
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It follows (27) - (??) that
. .1 ( ) ( ) 0.sup

g

ψ ψ
Ω
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Furthermore, 0 0 0( ) = ( ) [ ( ) ( )) ( ( ) ( )]ψ ψ ρ ψ ρ ψ ρ ψ ρ ψ′+ − −i i i i iQ Q E A , 

then by assumption 4, 0( ) ( )ψ ψ≥Q Q  and the equality holds if and only 
if ψ = ψ0. Thus, all conditions of Amemiya [28] Lemma 3 are satisfied 
and therefore 

. .

0ψ̂ ψ→
a s

N , as N→∞.

Proof of Theorem 1.2

By assumption 5 and the DCT, the first derivative ( ) /ψ ψ∂ ∂NQ  

 N = 50 N = 100
  Parameter  Naive MLE  MME  Naive MLE  MME 
β0 = 0.00   1.65 (1.69)  0.02 (0.15)  1.61 (1.62)  0.01 (0.08) 
βx = 2.00  -1.31 (1.32)  0.07 (0.72)  -1.32 (1.32)  0.03 (0.12) 
βz = 1.00  -0.10 (0.22)  -0.05 (0.49)  -0.11 (0.16)  0.01 (0.22) 
θ = 0.50  0.64 (1.06)  0.11 (1.09)  0.51 (0.65)  0.05 (0.13) 

Table 2: Biases(RMSE) for the parameter estimates in the random intercept Lo-
gistic models.

 N =100 N =300

  Distribution Parameter  Naive MLE  MME  Naive MLE  MME 

Normal β0 = 0.00    0.11 (0.16)  0.01 (0.09)  0.10 (0.12)  0.01 (0.06) 

βx = 2.00  -0.51 (0.51)  -0.05 (0.07)  -0.51 (0.51)  -0.02 (0.05) 

θ = 0.25  0.00 (0.18)  0.00 (0.25)  0.00 (0.11)  0.01 (0.17) 

ϕ =1  2.99 (3.00)  0.09 (0.46)  3.00 (3.01)  0.06 (0.31) 

t(3) β0 = 0.00     0.10 (0.15)  0.00 (0.10)  0.10 (0.12)  0.01 (0.06) 

βx = 2.00   -0.50 (0.51)  -0.04 (0.07)  -0.50 (0.51)  -0.02 (0.05) 

θ = 0.25   0.01 (0.38)  -0.02 (0.29)  -0.01 (0.20)  -0.02 (0.17) 

ϕ =1  2.98 (2.99)  0.05 (0.48)  2.99 (3.00)  0.05 (0.28) 

Table  3: Biases(RMSE) for the parameter estimates in the random intercept Pois-
son models.
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exists and has the first-order Taylor expansion in the open neighborhood 

Ωψ0 ∈ Ωψ of ψ0. Since 
. .

0ψ̂ ψ→
a s

N , for sufficiently large N we have 
2
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where 0 0ˆψ ψ ψ ψ− ≤ −N N . The first and second derivative of ( )ψNQ  

in (31) are given in (17) and (18).

Analogous to the proof of Theorem 1.1, by assumption 1 - 5 and 
Cauchy-Schwartz inequality, we can verify that 
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where Dψ is given in (11) and the second equality holds because 
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Then by assumption 6 and (32), we rearrange (31) as 
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For by assumption 5 and DCT, we have the first-order Taylor 
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Similarly to the derivation of (32), we can show 
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Then by (33)-(35), we have 
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Therefore, if Dψγ=0 we can ignore the effect of ĝ  and simply treated 
it as a known constant. If Dψ ≠ 0, we need to make some adjustments 
to the asymptotic variance of  . Since  , we have the first-order Taylor 
expansion in the open neighborhood   of γ0 

2
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By assumption 6, we can have the following representation of ĝ N  
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where Dγ is given in (12). Then plug it back into (36), we have 
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Finally, the theorem follows from (31) - (??), CLT and Slutsky's 
Theorem. 

Proof of Theorem 2.1

By assumption 1 and the DCT, , ( )ψN SQ   has the first-order Taylor 
expansion about γ0, 
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where 0 0ˆg g ψ ψ− ≤ −N N . Since ρi,1 and ρi,2 are conditionally 
independent given (Yi,Wi,Vi,Zi,Bi), analogous to the proof of Theorem 
1.1, by assumptions 1-3 and Cauchy-Schwartz inequality, we have 
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 It then follows that 
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It has been proved previously that ( )ψQ  attains a unique minimum 

at ψ0 ∈ Г. Therefore, by Lemma 3 of Amemiya (1973), 
. .

, 0ψ̂ ψ→
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N S , as 

N → ∞.

Proof of Theorem 2.2

For sufficiently large N, by assumption 5 we have the first-order 
Taylor expansion of , ( ) /ψ ψ∂ ∂N SQ  about ψ0: 
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Similar to the derivation of (32), we can show 
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uniformly for all ψ ∈ Г. Since 
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Again, , 0( )ψ ψ∂ ∂N SQ  has the first-order Taylor expansion about γ0: 
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Finally, Analogous to the proof of Theorem 1.2, the results follows 

from (38), (42)-(44), CLT and Slutsky's Theorem.
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