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Introduction
Electroporation is a phenomenon resulting from the application 

of an electric field across cell membranes, where in structural defects, 
commonly referred to as nanopores [1], are formed in response to 
an elevated transmembrane potential. The external electric field is 
conventionally unipolar, and its parameters can be regulated to create 
reversible defects, which enhance the permeability of the plasma 
membrane to molecules without compromising viability, or irreversible 
defects that ultimately lead to cell death. Currently, both modalities 
are being implemented as a therapeutic means to combat cancer. In 
applications of reversible electroporation, favorable clinical results 
have been obtained when low dosages of chemotherapeutic agents [2] 
or plasmid DNA [3] are used in combination with pulsed electric fields 
(PEFs). Alternatively, irreversible electroporation (IRE), performed 
with a comparatively higher field strength, duration, or pulse number, 
has been recognized as a non-thermal tissue ablation modality [4] 
capable of treating clinical tumors without adjuvant molecules [5].

Electroporation-based therapies (EBTs) are gaining interest as 
viable alternatives to surgical resection, chemotherapy, radiation 
therapy and thermal ablation techniques such as radiofrequency 
ablation, cryoablation or high-intensity focused ultrasound. As 
opposed to highly-toxic chemotherapy and radiation therapy regimes, 
all EBTs are well-tolerated by patients due to a lack of post-procedural 
complications [5,6]. Because the mechanism of cell death does not rely 
on thermal processes, outcomes are not subject to heat sink effects from 
blood perfusion, which can protect tumors from thermal therapies. 
Additionally, the treatment volume is predictable based on the electric 
field distribution in the tissue [7,8]. Specific to IRE, there is a distinct 
demarcation between ablated and non-ablated tissue that is visible 
in real-time on multiple imaging platforms [9,10]. Within the IRE 
ablation zone, it has been shown that extracellular matrix components 
are spared when parameters are chosen to avoid thermal damage. This 
permits treatment of surgically inoperable tumors in close proximity to 
major blood vessels and nerves [9,11,12] and the rapid repopulation of 
healthy cells post-IRE [10].

A challenge with EBTs is that the delivery of unipolar electric 
pulses characteristic of electroporation causes muscle contractions. 
To reduce movement, muscle relaxants may be administered to 
patients prior to treatment [10,13-15]. This poses additional concerns 
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for the anesthesiologist, as the dosage of muscle relaxants must be 
continually monitored to ensure an adequate neuromuscular blockade 
and proper respiratory function [16]. Electrically induced movement, 
while not ideal, has not prevented EBTs from being established as 
safe and effective treatment options for cancer [2,3,5,17,18] and 
other non-cancerous pathologies [19]. However, there has been a 
growing emphasis in the literature on developing novel techniques 
for performing electroporation that reduce the intensity or extent of 
muscle contractions [20-24].

Current State of the Art
Perhaps the first attempt to reduce muscle contractions during 

EBTs was made by Daskalov et al. [21]. Stemming from their work 
in the field of electrical stimulation [25], the authors designed a 
bipolar pulse generator to perform reversible electroporation with 
chemotherapeutic agents, or electrochemotherapy (ECT). The bipolar 
pulses consisted of a rectangular positive phase (50 µs duration) 
followed immediately by a negative phase of equivalent duration. The 
system was tested at electric field strengths up to 1250 V/cm on patients 
with basal cell and spin cell carcinoma by delivering eight individual 
pulses at 1 s intervals or a single burst of eight pulses with 1 ms spacing. 
For comparison to conventional electroporation protocols, eight 
unipolar rectangular pulses (100 µs duration) were also delivered at 1 
s intervals in some tumor locations. Only a local anesthetic was used 
in the procedure without any muscle relaxant. All patients responded 
positively and completely to treatment, regardless of the implemented 
pulsing protocol. While the authors make no comment on the severity 
or extent of muscle contractions, they do note that bipolar pulses were 
better tolerated by patients. Additionally, for the application of eight 
pulses as a single burst, the patients experienced only a single electrical 
sensation, as opposed to series of eight [21]. The technique of raising 
the pulse repetition rate above the frequency of tetanic contraction was 
later confirmed to be an effective option for unipolar pulsing as well 
[18,26], assuming optimal drug dosing [27].
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While applying bursts of microsecond-long unipolar pulses can 
reduce the total number of muscle contractions per treatment, the force 
of contraction is similar to that generated during an individual unipolar 
pulse [26]. However, as alluded to by Daskalov et al. [21], altering pulse 
polarity can be employed to reduce the intensity of muscle contractions. 
According to classic literature on electrical stimulation, a bipolar 
pulse has a higher current threshold for action potential excitation as 
compared to a unipolar pulse of equivalent phase duration [28]. This 
effect is enhanced as pulse duration is reduced. When a microsecond 
order pulse is applied, there is a latency period between the offset of 
the pulse and the rising phase of the action potential. A rapid reversal 
of polarity falling within this latency period can accelerate passive 
repolarization and inhibit action potential generation [29]. Therefore, 
with proper tuning of bipolar pulse parameters, it is possible to achieve 
a drop in muscle force, which can be attributed to the cessation of 
action potentials in part of the motor unit population. 

Our group invented a technique that utilizes bipolar pulses with 
a phase duration an order of magnitude shorter than that used by 
Daskalov et al. [21], to induce IRE without causing muscle contractions 
[20]. In this study, a pulse generator was developed that could deliver 
rectangular pulses with phase durations as short as 1 µs. It is important 
to note that multiple cycles of bipolar pulses were applied in succession 
to generate a 200 µs burst that was repeated once per second. The pulses 
were applied through electrodes inserted into the sensorimotor cortex 
of rats in order to study both direct stimulation of surrounding neck 
musculature through leak currents and induction of limb movement 
through stimulation of efferent neuronal pathways [12]. Qualitative 
assessment of the treated regions viewed histologically and under MRI 
indicated that bipolar pulses could non-thermally ablate tissue, albeit 
at a higher electric field strength when compared to unipolar pulses. 
However, even at higher field strengths (up to 4000 V/cm), there was 
no visual or tactile evidence of muscle contractions when bipolar 
pulses with phase durations of 1 to 2 µs were tested. Conversely, all IRE 
protocols tested with 200 µs long unipolar pulses produced detectable 
muscle contractions at field strengths as low as 500 V/cm[20]. In future 
work, additional experiments should be performed over the skin and in 
muscle for direct comparison to [21,29].

When pulse duration is reduced even further into the nanosecond 
range and stronger electric fields (10 – 100 kV/cm) are applied, 
it becomes possible to permeabilize both the plasma membrane 
intracellular structures [30]. These nanosecond pulsed electric fields 
(nsPEFs)have also shown great promise for treating cancer [31,32] by 
promoting calcium bursts [33], translocation of phosphatidylserine 
[33], and DNA damage [34], all of which are capable of triggering an 
apoptotic cascade. Typically, the pulse generator is based on a spark 
gap switched transmission line, and the resulting output closely 
resembles a unipolar pulse [35,36]. For unipolar pulses of this nature, 
cell death can be induced with a significant drop in muscle contractions 
as compared to unipolar microsecond-long pulses[23]. Experimentally 
derived strength-duration curves indicate that a 100 ns pulse requires 
a voltage two orders of magnitude greater than a 10 µs pulse to excite 
muscle [37].

Nerve conduction block induced by electrical currents, as 
opposed to chemical muscle relaxants, is another, largely unexplored, 
option for mitigating muscle contractions during EBTs. While the 
biophysics are not completely understood, scientists have shown that 
a reversible, fast-acting peripheral nerve block can be obtained with 
high-frequency bipolar pulses [38,39] or unipolar nsPEFs [40] without 
any accompanying thermal damage. It is thought that disrupting 
the transmembrane potential across a nerve at a localized point 

downstream from excitation may inhibit action potential propagation. 
Practical application of electrically mediated nerve blocking would 
require the placement of additional electrodes adjacent to those used 
for EBTs. If performed correctly, this technique could offer a safer 
alternative to muscle relaxant administration.

Recently, an alternative technique for mitigating muscle 
contractions during IRE has been proposed by Goldberg and Rubinsky 
[22]. Utilizing the concept of a Faraday cage, the authors have found that 
a certain arrangement of needle electrodes limits the amount of tissue 
exposed to electric fields above the threshold for muscle contraction, 
while having a minimal impact on the extent of electroporation. The 
design consists of a central energized electrode surrounded by an array 
of grounded electrodes. Similar geometries have been used successfully 
for cardiac defibrillation [41] and ECT [42]. Interestingly, by having 
16 or more grounded electrodes and by reducing the insertion depth 
of the central energized electrode relative to the grounded electrodes, 
the predicted amount of tissue experiencing muscle contractions 
falls dramatically [22]. Upon in vivo translation, it is expected that 
this concept will reduce direct stimulation of denervated muscle, as 
suggested here, and also reduce motor unit recruitment from nerve 
stimulation outside the targeted electroporated zone. 

Conclusion
The reports presented above indicate that many feasible routes 

exist for mitigating muscle contractions during EBTs. Continued 
development of all of these routes will be beneficial, as there may be 
certain applications for which some options are better suited. For 
example, the electrode configuration proposed above [22] requires 
an increase in the number of electrodes and may be most valuable in 
situations where the targeted region can be treated non-invasively, 
such as applications over the skin. Additionally, while positive results 
have been obtained with bipolar pulsing protocols in terms of reducing 
or eliminating muscle contractions, more work needs to be done in 
optimizing pulse parameters for specific applications. In a more recent 
study on ECT with bipolar pulses [43], a reduction in phase duration 
below 50 µs reduced electrical sensation, but also had a negative 
impact on treatment efficacy. However, we have shown that IRE can be 
performed with a phase duration of 1 µs by increasing the number of 
pulses and electric field strength [20]. Along these same lines, it should 
also be theoretically possible to cause cell death with bipolar nsPEFs 
of sufficient field strength. This may present an added improvement 
over the reduction in muscle contractions already seen with unipolar 
nsPEFs [23]. In the future, it is likely that continued work on mitigating 
muscle contractions will lead to the commercialization of new pulse 
generators and electrode designs that eliminateany need for muscle 
relaxant administration. This will further facilitate the widespread use 
of EBTs in clinical practice.
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